Study Guide and Intervention (continued)

Dividing Monomials

Negative Exponents Any nonzero number raised to the zero power is 1; for example, $(-0.5)^0 = 1$. Any nonzero number raised to a negative power is equal to the reciprocal of the number raised to the opposite power; for example, $6^{-3} = \frac{1}{6^3}$. These definitions can be used to simplify expressions that have negative exponents.

Zero Exponent	For any nonzero number a , $a^0 = 1$.
Negative Exponent Property	For any nonzero number a and any integer n , $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$.

The simplified form of an expression containing negative exponents must contain only positive exponents.

Example Simplify $\frac{4a^{-3}b^6}{16a^2b^6c^{-5}}$. Assume that no denominator equals zero.

$$\frac{4a^{-3}b^{6}}{16a^{2}b^{6}c^{-5}} = \left(\frac{4}{16}\right)\left(\frac{a^{-3}}{a^{2}}\right)\left(\frac{b^{6}}{b^{6}}\right)\left(\frac{1}{c^{-5}}\right)$$
$$= \frac{1}{4}(a^{-3-2})(b^{6-6})(c^{5})$$

Group powers with the same base.

$$= \frac{1}{4} (a^{-3-2})(b^{6-6})(c^5)$$

Quotient of Powers and Negative Exponent Properties

$$= \frac{1}{4} \, a^{-5} b^{\,0} c^{\,5}$$

$$=\frac{1}{4}\left(\frac{1}{a^5}\right)(1)c^5$$

Negative Exponent and Zero Exponent Properties

$$=\frac{c^5}{4a^5}$$

Simplify.

The solution is $\frac{c^5}{4a^5}$.

Exercises

Simplify each expression. Assume that no denominator equals zero.

1.
$$\frac{2^2}{2^{-3}}$$

2.
$$\frac{m}{m^{-4}}$$

3.
$$\frac{p^{-8}}{p^3}$$

4.
$$\frac{b^{-4}}{b^{-5}}$$

$$5. \ \frac{\left(-x^{-1}y\right)^0}{4w^{-1}y^2}$$

6.
$$\frac{(a^2b^3)^2}{(ab)^{-2}}$$

7.
$$\frac{x^4y^0}{x^{-2}}$$

8.
$$\frac{(6a^{-1}b)^2}{(b^2)^4}$$

9.
$$\frac{(3rt)^2u^{-4}}{r^{-1}t^2u^7}$$

$$10. \ \frac{m^{-3}t^{-5}}{(m^2t^3)^{-1}}$$

11.
$$\left(\frac{4m^2n^2}{8m^{-1}\ell}\right)^0$$

12.
$$\frac{(-2mn^2)^{-3}}{4m^{-6}n^4}$$