Upon completion of this chapter, you should be able to:

m Discuss why Java is an important programm‘ing
language.

Explain the Java virtual machine and byte code.
Choose a user interface style.

Describe the structure of a simple Java program.
Write a simple program.

Edit, compile, and run a program using a Java devel-
opment environment.

Format a program to give a pleasing, consistent
appearance.

®m Understand compile-time errors.
m Write a simple graphics program.
Estimated Time: 3.5 hours

Programs are written in programming languages, and the lan-
guage used in this book is Java. This chapter gets you up and run-
ning with a couple of simple Java programs. We show how to write
these first programs, compile them, and run them. In the process,

VOCABULARY

Applet
Assignment operator

Byte code

DOS development
environment

Graphical user
interface (GUI)

Hacking

Integrated development
environment (IDE)

Java virtual
machine (JVM)

Just-in-time
compilation (JIT)
Parameter
Source code
Statement

Terminal 1/0 user
interface

Variable

you will become acquainted with a Java programming environment, the structure of a simple
Java program, and the basic ideas of variables, input and output (I/O) statements, and sending

messages to objects.

2.1 Why Java?

Java is the fastest growing programming language in the world. Companies such as IBM and
Sun have adopted Java as their major application development language. There are several rea-

sons for this.

31

32

Unit 1 Getting Started with Java

First, Java is a modern object-oriented programming language. The designers of Java spent
much time studying the features of classical object-oriented languages such as Smalltalk and C++
and made a successful effort to incorporate the good features of these languages and omit the less
desirable ones.

Second, Java is secure, robust, and portable. That is, the Java language
Enables the construction of virus-free, tamper-free systems (secure)
Supports the development of programs that do not overwrite memory (robust)

Yields programs that can be run on different types of computers without change (portable)

These features make Java ideally suited to develop distributed, network-based applications,
which is an area of ever-increasing importance.

Third, Java supports the use of advanced programming concepts such as threads. A thread is
a process that can run concurrently with other processes. For example, a single Java application
might consist of two threads. One thread transfers an image from one machine to another across
a network, while the other thread simultaneously interacts with the user.

Fourth and finally, Java bears a superficial resemblance to C++, which is currently the world’s
most popular industrial-strength programming language. Thus, it is easy for a C++ programmer
to learn Java and for a Java programmer to learn C++. Compared to C++, however, Java is eas-
ier to use and learn, less error prone, more portable, and better suited to the Internet.

On the negative side, Java runs more slowly than most modern programming languages
because it is interpreted. To understand this last point we must now turn our attention to the
Java virtual machine and byte code.

E XERCISE 2.1

1. What is a portable program?
2. Describe two features of Java that make it a better language than C++,

3. What is a thread? Describe how threads might be used in a program.

2.2 The Java Virtual Machine and Byte Code

Compilers usually translate a higher-level language into the machine language of a particu-
lar type of computer. However, the Java compiler translates Java not into machine language, but
into a pseudomachine language called Java byte code. Byte code is the machine language for an
imaginary Java computer. To run Java byte code on a particular computer, you must install a
Java virtual machine (JVM) on that computer, unless you use a computer such as Apple’s
Macintosh, in which the JVM comes with the operating system.

A JVM is a program that behaves like a computer. Such a program is called an interpreter.
An interpreter has several advantages as well as some disadvantages. The main disadvantage of
an interpreter is that a program pretending to be a computer runs programs more slowly
than an actual computer. JVMs are getting faster every day, however. For instance, some JVMs

Chapter 2 First Java Programs

translate byte code instructions into machine language when they are first encountered—called
just-in-time compilation (JIT)—so that the next time the instruction is encountered it is exe-
cuted as fast machine code rather than being interpreted as slow byte code. Also, new com-
puter chips are being developed that implement a JVM directly in hardware, thus avoiding the
performance penalty.

The main advantage of an interpreter is that any computer can run it. Thus, Java byte code is
highly portable. For instance, many of the pages you download on the Web contain small Java
programs already translated into byte code. These are called applets, and they are run in a JVM
that is incorporated into your Web browser. These applets range from the decorative (displaying
a comical animated character on a Web page) to the practical (displaying a continuous stream of
stock market quotes).

Because Java programs run inside a virtual machine, it is possible to limit their capabilities.
Thus, ideally, you never have to worry about a Java applet infecting your computer with a virus,
erasing the files on your hard drive, or stealing sensitive information and sending it across the
Internet to a competitor. In practice, however, computer hackers have successfully penetrated
Java’s security mechanisms in the past and may succeed again in the future. But all things con-
sidered, Java applets really are very secure, and security weaknesses are repaired as soon as they
become known.

E XERCISE 2.2
1. What does JVM stand for?
2. What is byte code? Describe how the JVM uses byte code.

3. What is an applet? Describe how applets are used.

2.3 Choosing a User Interface Style

Before writing our first program, we must make a difficult decision. What type of user inter-
face do we want to use? There are two choices: the graphical user interface (GUI), familiar to all
PC users, and the less common terminal I/O user interface. Figure 2-1 illustrates both in the con-
text of a program that converts degrees Fahrenheit to degrees Celsius. The graphical user inter-
face on the left is familiar and comfortable. The user enters a number in the first box, clicks the
command button, and the program displays the answer in the second box. The terminal-based
interface on the right begins by displaying the prompt “Enter degrees Fahrenheit: ”. The user
then enters a number and presses the Enter key. The program responds by displaying the answer.

FIGURE 2-1
Two user interfaces for a temperature conversion program

S g
it: 21

is 188.0

33

34

Unit 1 Getting Started with Java

We use terminal I/O user interface in most of the program examples in this book. Beginning
with this chapter, an optional end-of-chapter section introduces various aspects of graphics and
GUI programming. In the long run, you will discover that this book’s core material is indepen-
dent of interface issues. There are three reasons for using terminal I/O. First, in Java and many
other languages, a terminal user interface is easier to implement than a GUI, although in other
languages, such as Visual BASIC, the opposite is true. Second, there are programming situations
that require terminal I/O rather than a GUI, so familiarity with the techniques of terminal-
oriented programming is important. Third, terminal-oriented programs are similar in structure
to programs that process files of sequentially organized data, and what we learn here will be
transferable to that setting.

2.4 Hello World

In conformance with a long and honorable tradition dating back to the early days of the lan-
guage C, a textbook’s first program often does nothing more than display the words “Hello
World” in a terminal window. Actually, as you can see in Figure 2-2, we could not resist adding
a few embellishments. In case you have not guessed, the imagery is the words “Hello World” ris-
ing like steam from the cup of hot Java.

FIGURE 2-2
Hello World

The Source Code

Just as a recipe is a sequence of instructions for a chef, a program is a sequence of instructions
for a computer. And just as a recipe does nothing until executed by a chef, so a program does

Chapter 2 First Java Programs

nothing until executed by a computer. With that in mind, the following is the bulk of the instruc-
tions, or source code, for our HelloWorld program:

System.out.println(" d N
system.out.println(" o 1 wys
system.out.println(" 1 r wys
System.out.println(" 1 o ")
System.out.println(" e W "yi
System.out.println(" H nye
System.out.println(“ XXXXXKXXXXXXXXKXKXXX ")
System.out.println(" X X b4 ");
System.out.println(" X Java X X ")s
System.out.println(" X XXXX "y g
system.out.println(” X is hot! x ")
System.out.println(” X X "y
System.out.println(" X X uyis
System.out.println(" XXXXXXXKXXXXXXK ")
The Explanation

In this code

B System.out is the name of an object that knows how to display or print characters in a ter-
minal window.

println is the name of the message being sent to the System.out object.
The strings enclosed in quotation marks contain the characters to be printed.

Semicolons (;) mark the end of each statement or sentence in the program.

As mentioned at the end of Chapter 1, an object-oriented program accomplishes its tasks by
sending messages to objects. In this program, a System.out object responds to a println mes-
sage by printing a string of characters in the terminal window. The string of characters that
appears between the parentheses following the message is called a parameter. Some messages
require several parameters, separated from each other by commas, whereas other messages have
no parameters. The “In” in the message println stands for “line” and indicates that the
system.out object should advance to the beginning of the next line after printing a string,.

Sending messages to objects always takes the form

<name of object>.<name of message>(<parameters>)

The period (.) between the object’s name and the message’s name is called a method selector
operator. The period between the words System and out is not a method selector operator. For
now you can just think of it as part of the object’s name.

The Larger Framework

The program as presented so far is not complete. It must be embedded in a larger framework
defined by several additional lines of code. No attempt will be made to explain this code until a

35

Unit 1 Getting Started with Java

later chapter, but, fortunately, it can be reused with little change from one program to the next.
Following then is the complete program with the new lines shown in color:

// Example 2.1: Our first program
public class HelloWorld{

public static void main(String [] args) {

System.out.println(" d ")
System.out.println(" o 1 ")
System.out.println(" 1 E ")
System.out.println(" 1 o ")
System.out.println(" e W "33
System.out.println(" H)i
System.out.println(" KXXXXXXXXKXXXXXXKK)3
System.out.println(" X X X vy
System.out.println(" X Java X X ")
System.out.println(" 3% XXXX "y
System.out.println(" X is hot! x ")
System.out.println(" X % nys
System.out.println(" X X ")
System.out.println(" XXXXXXXXXXXXXXK ")

To reuse the framework, replace HelloWorld with the name of another program:

public class <name of program> {
public static void main(String [] args) {
+ « . put the source code here . . .

}

In this text, we write program comments in green, reserved words in blue, and the rest of the
program code in black. Program comments and reserved words vwill be explained in Chapter 3.

E XERCISE 2.4

1. Give a short definition of “program.”
2. What is the effect of the message println?
3. Describe how to use the System.out object.

4. Write a sequence of statements to display your name, address, and phone number in the termi-
nal window.

2.5 Edit, Compile, and Execute

Chapter 2 First Java Programs 37

I the preceding section, we presented the source code for our first program. Now we discuss

how to enter it into a computer and run it. There are three steps:

1.

Edit. In the first step, the programmer uses a word processor or editor to enter the source
code into the computer and save it in a text file. The name of the text file must match the
name of the program with the extension . java added, as in HelloWorld. java.

Compile. In the second step, the programmer invokes the Java language compiler to trans-
late the source code into Java byte code. In this example, the compller translates source
code in the file HelloWorld. java to byte code in the file HelloWorld.class. The exten-
sion for a byte code file is always .class.

Execute. In the third step, the programmer instructs the JVM to load the byte code into
memory and execute it. At this point the user and the program can interact, with the user
entering data and the program displaying instructions and results.

Figure 2-3 illustrates the steps. The ovals represent the processes edit, compile, and execute. The

names of the files HelloWorld.java and HelloWorld.class are shown between parallel lines.

FIGURE 2-3
Editing, compiling, and running a program

source code

Edit

|

HelloWorld.java

Compile

HelloWorld.class

keyboard — Execute
input

screen output

38

Unit 1 Getting Started with Java

Development Environments

The details involved in editing, compiling, and running a program vary with the development
environment being used. Some common development environments available to Java program-
mers include the following:

® UNIX or Linux using a standard text editor with command-line activation of the compiler and
the JVM. UNIX is available on any Macintosh computer that runs MacOS X.

B Various versions of Microsoft Windows using Notepad for the editor with command-line
activation of the compiler and the JVM from inside a command or DOS window. We call
this the DOS development environment.

B Windows or MacOS using an integrated development environment (IDE) such as
Metrowerks’ Code Warrior, Microsoft’s Visual J++, Borland’s Jbuilder, or free educational-
use-only IDEs such as BlueJ and JGrasp.

The first two options are free and may require you to download and install the Java software
development kit (SDK) as described in Appendix A. The third option, an integrated development
environment, may cost money, but it has the advantage of combining an editor, a Java compiler,
a debugger, and a JVM in a manner intended to increase programmer productivity. IDEs take
time to master, however, and they can obscure fundamental details of the edit, compile, and run
sequence.

Because we cannot possibly discuss all of these environments simultaneously, we give our
instructions in terms of the DOS development environment that has the most widespread use.
Macintosh users can use the UNIX command prompt and TextEdit. The installation and use of

some of the major alternatives are presented in our supplemental materials on the book’s Web
site (the URL is in Appendix A).

Preparing Your Development Environment

Before writing your first program, you must install a Java development environment on your
computer. Guidelines for doing this are presented in Appendix A.

Step-by-Step Instructions

We are now ready to present step-by-step instructions for editing, compiling, and running the
HelloWorld program. These instructions apply to users of the Windows XP system. After read-
ing what follows, read the supplemental material for an explanation that matches the develop-
ment environment on your computer.

Step 1. Use Windows Explorer to create the directory in which you intend to work (for
instance, C:\Javafiles). Open a terminal window by selecting Command Prompt (or something
similar) on the Start/All Programs/Accessories menu. In the terminal window, use the cd com-
mand to move to the working directory as illustrated in Figure 2-4.

FIGURE 24
Using the ed command to move to the working directory

¢+ Command Prompt HEB

Chapter 2 First Java Programs 39

Step 2. Open the Notepad editor and create the file HelloWorld. java by typing the text as
shown in Figure 2-5.

FIGURE 2-5
Activating Notepad to edit the program

o+ Command Prompt !En

C:\>cd javafiles

C:\Javafiles>notepad HellolWorld. java

Once Notepad opens, type in the lines of code for the program. Figure 2-6 shows the
Notepad window after the program has been entered.

FIGURE 2-6
The program as typed into Notepad

{ Helloworld - Notepad
File Edit Format View Help

|// Example 2.1: outputs a Java greeting A
public class Helloworld{

public static void main(string [1 args) g

system. out. printin(

system. out.printin(” o 1 -
system. out. printin(" 1 r g
system. out. printin(” 1 0 "
system. out.printin(” e W)
system. out. printin(” H "
system. out. printIn(" XXXXXXXXXXXKXXXXX

system. out.printIn(" X
system. out.printin" X
system. out.printin(” R
system. out.printin(” X is hot! x
X
X
X

»
bt
AN M N N M N N o S S S NS S

Java X X

system. out.printIn(”
system. out. printin("

system. out. printin(" XXXXXXXXXXXXX

£

Step 3. Save the file and switch back to the terminal window. Compile the program by typing
javac HelloWorld.java. The DOS prompt returns when the compilation is complete.

Step 4. Run the program by typing java Helloworld. Figure 2-7 illustrates this step as well
as the previous step.

FIGURE 2-7
Compiling and running the program

¢+ Command Prompt !Em

Javafiles>javac HellolWorld. java

C:\Javafiles>java HelloWorld
d

C:N\Javafiles>

40

Unit 1 Getting Started with Java

Compile-Time Errors

It is inevitable that we will make typographical errors when we edit programs, and the compiler
will nearly always detect them. Mistakes detected by the compiler are called syntax errors or compile-
time errors. To illustrate these, we modify the program so that it includes a syntax error. After reading
this subsection, read the supplemental material that matches your development environment.

On line 6 of the program we misspell println as prinrln. Figure 2-8 shows the program with
the error as it appears in Notepad.

FIGURE 2-8
The program with a compile-time error on line 6

I HelloWorld - Notepad (=)t

Fle Edit Format View Help

// Example 2.1: outpijts a Java greeting A
public class Helloworld{

public static void main(string [] args) {
system.out.prinrin(" d
system.out.printin(” o 1
System.out.printin(” 1 r
system.out.printin(” 1 5]
System.out.println(” e w
System.out.println(” H
System.out.printin(” XXXXXXXXXXXXXXXXX
System.out.println(" X X X
system.out.printIn(” X Java X: X
System.out.printin(” % XXXX
System.out.printin(" x s hot! x
System.out.printIn(" X X
system.out.println(” X X
system.out.printin(” XXXXXXXXXXXXXX

AN AN

When the program is compiled, the compiler prints a list of errors in the terminal window as
shown in Figure 2-9. The error message is not difficult to understand. It refers to line 6 of the
source program and says that a symbol cannot be found. More specifically, the symbol for
method prinrin within the class java.io.PrintStream cannot be found. In fact, the object
System.out is a member of this class, and the program has attempted to send a message that the
class does not recognize. A caret symbol (*) points to the location of the error in the code.
Unfortunately, some error messages may be difficult to decipher, but at least they indicate where
the compiler encountered text it could not translate into byte code.

FIGURE 2-9
The compiler’s error message

¢+ Command Prompt

Readability

Programs typically have a long life and are usually maintained by many people other than their
original authors. For this reason, if for no other, it is extremely important to write programs that are

Chapter 2 First Java Programs

highly readable. The main factor affecting a program’s readability is its layout. Indentation, the inclu-
sion of blank lines and spaces, and other typographical considerations make the difference between
an intelligible program and an incomprehensible mess. Interestingly, the compiler completely ignores
a program’s format, provided that there are no line breaks in the middle of words or quoted strings.
Throughout the book, we attempt to format our programs in a pleasing and consistent manner, and
you should strive to do the same. For your enjoyment the following example is a very unreadable but
completely functional rendering of the HelloWorld program:

public class

HelloWorld
{public static void main (String [] args) {System.out.println(
" d ");System.out.println
(" o 1 ")
System.out.println(" 1 r Y
System. out
.println(" L o ") !
; System.out.println(" e W ");System.out
.println(" H ");System.out.println
" XXXXXXXXXXXXXXKKXX ");System.out.println(
" b4 X X ")
;System.out.println(" X Java X X ")
System.out.println(" b 4 XXXX e
System.out.println(" b4 is hot! x "ys
System.out.println(" b'd X "y3
System.out.println(" X b4 ")
System.out.println(" XKXXXXXXXXKXKXKXX ")s 0} O}

Computer Ethics

INTRUSIVE HACKING

Hacking is a term whose use goes back to the early days of computing. In its origi-
nal sense, a “hack” is a programmer who exhibits rare problem-solving ability and com-
mands the respect of other programmers. The culture of hackers began in the late
1950s at the MIT computer science labs. These programmers, many of them students
and later professionals and teachers in the field, regarded hacking as an accomplish-
ment along the lines of Olympic gymnastics. These programmers even advocated a
“hacker ethic,” which stated, among other things, that hackers should respect the pri-
vacy of others and distribute their software for free. For a narrative of the early tradition
of hacking, see Steven Levy, Hackers: Heroes of the Computer Revolution (Garden City,
New York: Anchor Press/Doubleday, 1984).

Unfortunately, the practice of hacking has changed over the years, and the term
has acquired darker connotations. Programmers who break into computer systems in
an unauthorized way are called hackers, whether their intent is just to impress their
peers or to cause actual harm. Students and professionals who lack a disciplined
approach to programming are also called hackers. An excellent account of the most
famous case of intrusive hacking can be found in Clifford Stoll, The Cuckoo’s Egg:
Tracking Through the Maze of Computer Espionage (New York: Doubleday, 1989).

42

Unit 1 Getting Started with Java

E XERCISE 2.5

1. Name the three steps in writing and running a program.
2. What are compile-time errors?

3. Find the compile-time errors in the following statements:
a. System.out.printin(“Here is an error);
b. System.out.printin(“Here is another error”;

4. Why is readability a desirable characteristic of a program?

2.6 Temperature Conversion

We now present code for the temperature conversion program illustrated earlier in the chapter.
To refresh your memory, we show the user interface again in Figure 2-10. This program is fundamen-
tally more interesting than the HelloWor1d program because it reads user inputs and performs com-
putations. Despite its brevity and simplicity, the program demonstrates several important concepts.

FIGURE 2-10
The user interface for the temperature conversion program

e+ Command Prompt !EE

s 100.9

The Source Code

The program’s source code is

// Example 2.2: inputs degrees Fahrenheit
// from the keyboard and outputs degrees Celsius

import java.util.Scanner;
public class Convert{
public static void main(String [] args){
Scanner reader = new Scanner(System.in);
double fahrenheit;

double celsius;

System.out.print("Enter degrees Fahrenheit: ");
fahrenheit = reader.nextDouble();

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

Chapter 2 First Java Programs

System.out.print("The equivalent in Celsius is ");
System.out.println(celsius);

The Explanation

Following is a line-by-line explanation of the most significant portions of the program.

import java.util.Scanner;

The program’s first line of code is an import statement. The program must read inputs
entered at the keyboard, and this functionality is provided by something called a scanner object.
Such objects are instances of the class scanner. In this line of code, we are telling the compiler
where to find complete specifications for the class. The periods that appear in this statement are
NOT method selectors. '

Scanner reader = new Scanner (System.in);

In this statement, we instantiate or create a Scanner object. We have arbitrarily decided to
call the object reader. The name suggests what the object does, so it is a good choice. As men-
tioned in Chapter 1, an object is always an instance of a class and must be created, or instanti-
ated, before being used. In general, instantiation is done like this:

SomeClass someObject = new SomeClass(some parameters);

The code system.in names a variable in the System class that refers to the keyboard. This
object is passed as a parameter to the code that instantiates the Scanner object in order to con-
nect the two objects. Parameters are used to share information between objects.

double fahrenheit;
double celsius;

In these statements, we declare that the program will use two numeric variables called
fahrenheit and celsius. A numeric variable names a location in RAM in which a number can
be stored. The number is usually referred to as the variable’s value. During the course of a pro-
gram, a variable’s value can change, but its name remains constant. The variables in this program
are of type double, which means they will contain only floating-point numbers. It is customary,
though not required, to begin variable names with a lowercase letter, thus fahrenheit rather
than Fahrenheit. We are allowed to declare as many variables as we want in a program, and we
can name them pretty much as we please. Restrictions are explained in Chapter 3.

System.out.print ("Enter degrees Fahrenheit: ");

This statement is similar to those we saw in the HelloWorld program, but there is a minor dif-
ference. The message here is print rather than println. A print message positions the cursor
immediately after the last character printed rather than moving it to the beginning of the next line.

fahrenheit = reader.nextDouble();

43

44

Unit 1 Getting Started with Java

In this statement, the reader object responds to the message nextDouble by waiting for the
user to type a number and then press Enter, at which point the reader object returns the num-
ber to the program. The number is then assigned to the variable fahrenheit by means of the
assignment operator (=). The number entered by the user is now stored in the variable. Note
that although the nextDouble message has no parameters, the parentheses are still required. As
the user types at the keyboard, the characters are automatically echoed in the terminal window,
but not until the user presses Enter does this input become available to the program.

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

In this statement, the expression to the right of the assignment operator (=) is evaluated, and
then the resulting value is stored in memory at location celsius. Statements utilizing an assign-
ment operator are called assignment statements. When the computer evaluates the expression, it
uses the value stored in the variable fahrenheit. Notice that all the numbers (32.0, 5.0, and 9.0)
contain a decimal point. In Java, some unexpected rules govern what happens when integers and
floating-point numbers are mixed in an expression, so until we discuss the rules in Chapter 3, we
will not mix integers and floating-point numbers. In the expression, as in algebra, the following
symbols are used:

indicates the multiplication operator
/ indicates the division operator
- indicates the subtraction operator

Of course, there is another common operator, namely + for addition. Notice the use of paren-
theses in the previous expression. In Java, as in algebra, multiplication and division are done
before addition and subtraction unless parentheses are used to change the order of the computa-
tions; in other words, multiplication and division have higher precedence than addition and sub-
traction.

System.out.print("The equivalent in Celsius is ");

Here the system.out object prints the string “The equivalent in Celsius is ”. The cursor is
positioned after the last character in preparation for the next line of code.

System.out.println(celsius);

Here the system.out object prints the value of the variable celsius. The parameter for a
print or println message can be a string in quotation marks, a variable, or even an expression.
When a variable is used, the variable’s value is printed, not its name. When an expression is used,
the expression is evaluated before its value is printed.

Variables and Objects

Figure 2-11 depicts four of the variables and objects used in the program. All of these exist in
the computer’s memory while the program is running. The variables fahrenheit and celsius
each hold a single floating-point number. At any given instant, the value stored in a variable
depends on the effect of the preceding lines of code. The variables reader and System.out are

Chapter 2 First Java Programs

very different from the variables fahrenheit and celsius. Instead of holding numbers, they
hold references to objects. The arrows in the figure are intended to suggest this fact. During the
course of the program, we think of the reader variable as being the name of an object. As the
figure indicates, we know nothing about what lies inside the reader object (information hiding),
but we do know that it responds to the message nextDouble. System.out also names an
object, but one that is never declared in our programs. How this can be so is explained in a later
chapter. The System.out object responds to the messages print and println. One of the really
significant facts about object-oriented programming is that we can use objects without having
the least idea of their internal workings. Likewise, we can design objects for others to use with-
out telling them anything about the implementation details.

FIGURE 2-11
Variables and objects used in the conversion program

fahrenheit celsius
212.0 100.0

reader System.out

Scanner an output
object object

E XERCISE 2.6

1. What is a variable in a program and how is it used?

2. Describe the role of the assignment (=) operator in a program.

3. What is a scanner object?

4. Explain the difference between a variable of type double and a variable of type Scanner.
5

. Describe the difference between print and println, and give an appropriate example of the use of each.

46

Unit 1 Getting Started with Java

2.7 Graphics and GUIs:
Windows and Panels

Java comes with a large array of classes that sup-
port graphics and GUI programming. In this section,
we examine how to set up and manipulate an applica-
tion window, explore the use of colors, and lay out
regions within the window.

A Simple Application Window

Graphics and GUI programs in Java can run either as
standalone applications or as applets. We discuss applets,
which run in a Web browser, in Chapter 8. A standalone
GUI application runs in a window. The window for our
first GUI application is shown in Figure 2-12. The visual
appearance or “look and feel” of a window might vary
from computer to computer, but several features are
constant.

FIGURE 2-12

This is our first end-of-chapter
section on graphics and GUIs.
In these sections, we give you
an opportunity to explore the
concepts and programming tech-
niques required to develop mod-
ern graphics applications and
GUIs. None of this material is
required for the other chapters
of the book. But if you elect to
go through it, you will learn how
to write programs that display
colors and geometric shapes,
allow the user to interact by
manipulating a mouse, animate
shapes and images, and employ
various “widgets” such as com-
mand buttons, text fields, slid-
ers, and drop-down menus to
accomplish useful tasks.

A GUI program with an empty window

L BX

= First GUI Program

The window has a title bar that displays the message “First GUI Program.” The user can drag
the window to another position on the desktop by moving the mouse cursor to the title bar and
then clicking and dragging.

The title bar contains some controls that allow the user to minimize the window (moving it
to the desktop tray or dock), zoom it to full screen size, or close it (which usually quits the
application).

The window has an initial width and height that the user can modify by selecting its lower-
right corner and dragging appropriately.

Chapter 2 First Java Programs

Other than exhibiting the basic features and common behavior of all GUI applications, our
first GUI application displays no other GUI components and does nothing. Here is the code for
the application, followed by an explanation.

// Example 2.3: an empty frame
import javax.swing.*; // Access JFrame
public class GUIWindow({

public static void main(String[] args){
JFrame theGUI = new JFrame();
theGUI.setTitle("First GUI Program");
theGUI.setSize (300, 200);
theGUI.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
theGUI.setVisible(true);

The code for application windows in Java is located in the class JFrame, which is imported
from the package javax.swing. The main method simply creates an instance of JFrame and
sends it messages to set up and display the window. Unlike a terminal I/O application, the pro-
gram does not quit when the end of the main method is reached but stays alive until the user
selects the window’s close box.

A JFrame object responds to many messages, among them messages to set its title to a given
string, set its initial size to a width and height in pixels, set the operation that will be performed
when it closes (exits the application), and set its visibility (true/visible or false/invisible). A set of
commonly used JFrame methods is listed in Table 2-1.

TABLE 2-1
Some commonly used JFrame methods

JFRAME METHOD

Container getContentPane() Returns the frame’s container to which
components can be added

void setResizable(boolean b) If b is false, the user cannot resize the
window; if b is true, the user can resize the
window. The default is that the window is
resizable.

void setDefaultCloseIndicator(int i) | Sets the operation to be performed when the
user closes the frame

void setSize(int width, int height) Sets the size of the frame to the width and
height in pixels

void setTitle(String title) Displays the title in the frame’s title bar

void setVisible(boolean b) Displays the frame if b is true or hides it if b
is false

47

Unit 1 Getting Started with Java

Panels and Colors

An application window is really just an empty container that we can fill with other objects.
Onec such object is called a panel. A panel is a flat, rectangular area suitable for displaying other
objects such as geometric shapes and images. Windows are often organized into multiple panels
or panes, each of which contains related objects such as images and widgets. Panels themselves
have fairly simple features, including a width, height, and background color. The class Jpanel,
also in javax.swing, represents panels in Java.

As we mentioned in Chapter 1, colors in most computer systems use the RGB scheme, which
encodes 16,777,216 distinct colors. The Color class, which appears in the package java.awt,
can be used to create any of these color values, as follows:

Color aColor = new Color(redValue, greenValue, blueValue)

where the red, green, and blue values are integers ranging from 0 to 255. Recall that 255
indicates the maximum intensity of a color component, whereas 0 indicates the absence of that
component. Thus, the code new Color(0, 0, 0) would create an object representing the color
black. For convenience, the Color class also includes constants for several commonly used col-
ors, which are listed with their RGB values in Table 2-2.

TABLE 2-2
Some Color constants

COLOR CONSTANT | RGB VALUE

Color.red new Color(255, 0, 0)
Color.green new Color(0, 255, 0)
Color.blue new Color(0, 0, 255)
Color.yellow new Color(255, 255, 0)
Color.cyan new Color(0, 255, 255)
Color.magenta new Color(255, 0, 255)
Color.orange new Color(255, 200, 0)
Color.pink new Color(255, 175, 175)
Color.black new Color(0, O, 0)
Color.white new Color(255, 255, 255)
Color.gray new Color(128, 128, 128)
Color.lightGray new Color(192, 192, 192)
Color.darkGray new Color(64, 64, 64)

Chapter 2 First Java Programs

Our next example program creates a panel, sets its background color to pink, and adds the
panel to the application window.

// Example 2.4: a frame with an empty, pink panel

import javax.swing.*; // For JFrame and JPanel
import java.awt.*; // For Color and Container

public class GUIWindow({

public static void main(String[] args){
JFrame theGUI = new JFrame();
theGUI.setTitle("Second GUI Program");
theGUI.setSize (300, 200);
theGUI.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel = new JPanel();
panel.setBackground(Color.pink);
Container pane = theGUI.getContentPane();
pane.add(panel);
theGUI.setVisible(true);

When this program is run, its window looks just like that of the first program, except that the
area below the title bar is pink. Note the procedure for adding the panel to the window. We must
first obtain the window’s container object by running the method getcontentPane(). We then
add the panel to this container.

Layout Managers and Multiple Panels

The previous example displayed a single panel in an application window. When we have
more than one panel or other objects to display in a window, we have to be concerned about how
they are organized or laid out. In Java, each container object, such as a frame or a panel, uses an
object called a layout manager to accomplish this. Thus, when a program adds an object to a
container, the container’s layout manager actually influences its placement. Each type of con-
tainer has a default layout manager, which we can reset to a different type of layout manager if
the default does not suit our needs.

The default layout manager for frames is an instance of the class BorderLayout. A border
layout allows us to arrange up to five objects in positions that correspond to the directions north
(top), east (right), south (bottom), west (left), and center. If we add fewer than five objects, the
layout manager stretches some of them to fill the unoccupied areas. To see what these areas look
like when they are all occupied, we modify our second program to add five colored panels to the

49

50 Unit 4 Getting Started with Java

window. The north and south panels are red, the east and west panels are blue, and the center
panel is white. The result is displayed in Figure 2-13.

// Example 2.5: a frame with 5 colored panels
// that show the border layout

import javax.swing.*; // For JFrame and JPanel
import java.awt.*; // For Color and Container

public class GUIWindow({

public static void main(String[] args)({
JFrame theGUI = new JFrame();
theGUI.setTitle("Third GUI Program");
theGUI.setSize (300, 200);
theGUI.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE) ;
JPanel northPanel = new JPanel();
northPanel.setBackground(Color.red);
JPanel eastPanel = new JPanel();
eastPanel.setBackground(Color.blue);
JPanel southPanel = new JPanel();
southPanel.setBackground(Color.red);
JPanel westPanel = new JPanel();
westPanel.setBackground(Color.blue);
JPanel centerPanel = new JPanel();
centerPanel.setBackground(Color.white);
Container pane = theGUI.getContentPane();
pane.add(northPanel, BorderLayout.NORTH) ;
pane.add(eastPanel, BorderLayout.EAST);
pane.add(southPanel, BorderLayout.SOUTH);
pane.add(westPanel, BorderLayout.WEST);
pane.add(centerPanel, BorderLayout.CENTER);
theGUI.setVisible(true);

FIGURE 2-13
A border layout with five panels

< Third GUI Program (=1E3 ’

Note the use of the BorderLayout constants to specify the area of the container to which an
object is added. When the constant is omitted, as it was in our previous program, a border layout
places the object in the center area.

Chapter 2 First Java Programs 51

Suppose we want to organize the colored areas in a grid to make a checkerboard. A border
layout will not do. Fortunately, the package java.awt includes the class Gridrayout for this
purpose. When it’s created, a grid layout is given a number of rows and columns. The areas of the
cells in the resulting grid are the same size. The objects are placed in cells from left to right, start-
ing with the first row and moving down. Our final program example resets the container’s layout
to a 2-by-2 grid layout and then places four panels colored white, black, gray, and white in it.
The result is shown in Figure 2-14.

// Example 2.6: a frame with a 2 by 2 grid of colored panels

import javax.swing.*; // For JFrame and JPanel
import java.awt.*; // For Color, Container, and GridLayout

public class GUIWindow{

public static void main(String[] args)({
JFrame theGUI = new JFrame();
theGUI.setTitle("Fourth GUI Program");
theGUI.setSize (300, 200);
theGUI.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panell = new JPanel();
panell.setBackground(Color.white);
JPanel panel2 = new JPanel();
panel2.setBackground(Color.black);
JPanel panel3 = new JPanel();
panel3.setBackground(Color.gray);
JPanel panel4 = new JPanel();
paneld.setBackground(Color.white);
Container pane = theGUI.getContentPane();
pane.setLayout (new GridLayout(2, 2));
pane.add(panell);
pane.add(panel2);
pane.add(panel3);
pane.add(paneld);
theGUI.setVisible(true);

FIGURE 2-14
A 2-by-2 grid layout with four panels

= Fourth GUI Program g@@

52 Unit 1 Getting Started with Java

E XERCISE 2.7

1. Write the integer values of red, green, and blue for the following RGB colors:
a. white
b. black
¢. highest intensity blue
d. medium gray

2. Describe the roles and responsibilities of a frame, a panel, and a layout manager in a GUI application.
3. Where are panels displayed when a border layout is used to control their placement in a window?

4. Write a code segment that would be used to set the layout for adding panels to a 5-by-5 grid in a win-
dow. You may assume that the panel’s content pane is named pane.

SUMMARY

In this chapter, you learned:

B Java is the fastest growing programming language in the world. It is secure, robust, and
portable. It is also similar to C++, the world’s most popular programming language.

m The Java compiler translates Java into a pseudomachine language called Java byte code.
Byte code can be run on any computer that has a Java virtual machine installed. The Java
virtual machine (JVM) is a program that behaves like a computer—an interpreter.

B Java programs include variables, arithmetic expressions, statements, objects, messages, and
methods.

m Three basic steps in the coding process are editing, compiling, and running a program using
a Java development environment. Programmers should pay attention to a program’s format
to ensure readability.

B Java programs accomplish many tasks by sending messages to objects. Examples are send-
ing text to the terminal window for output and receiving input data from the keyboard.

B There are several user interface styles, among them terminal based and graphical based.

VOCABULARYReview

Define the following terms:

Applet Hacking Parameter

Assignment operator Integrated development Source code

Byte code environment (IDE) Statement

DOS development Java virtual machine (JVM) Terminal I/O interface
environment Just-in-time compilation (JIT) Variable

Grapbhical user interface (GUI)

Chapter 2 First Java Programs 53

REVI EWQuestions

WRITTEN QUESTIONS
Write a brief answer to each of the following questions.

1. List three reasons why Java is an important programming language.

2. What is byte code?

3. What is the JVM?

4. List two objects that are used for terminal input and output in Java programs.

5. Give examples of two compile-time errors.

6. What steps must be followed to run a Java program?

54

Unit 1 Getting Started with Java

7. What is the purpose of an import statement in a Java program?

FILL IN THE BLANK

Complete the following sentences by writing the correct word or words in the blanks provided.

Two user interface styles are and

The message _is used to output data to the terminal window.
The message _is used to input a number from the keyboard.
names a place where data can be stored in a Java program.

A(n) ____ stores the value of the expression in the variable.

N I
2z
B

Programs manipulate objects by sending them

PROJECTS

Beginning with this chapter, we conclude each chapter with a set of programming problems
and activities. We want to emphasize that programming is not just coding. Thus, a complete
solution to each exercise in this section would include not just a set of .java and .class files for the
program but also a report that covers the analysis, design, and results of testing the program.
Ideally, you would do analysis and design before coding, and perhaps turn in this work for
review before coding proceeds. How this is done depends on the size of the class and the time
available to the instructor. In any case, when you see the words “write a program that . . .”, you
should at least pause to reflect on the nature of the problem before coding the solution. For
example, your analysis might consist of a description of how the program would be used.

PROJECT 2-1

Write a program that displays your name, address, and telephone number.

PROJECT 2-2

A yield sign encloses the word YIELD within a triangle. Write a program that displays a yield
sign. (Use stars to represent the sides of the triangle.)

Chapter 2 First Java Programs

PROJECT 2-3

Write a program that takes as input a number of kilometers and prints the corresponding
number of nautical miles. You may rely on the following items of information:

B A kilometer represents 1/10,000 of the distance between the North Pole and the equator.

B There are 90 degrees, containing 60 minutes of arc each, between the North Pole and the
equator.

B A nautical mile is 1 minute of an arc.

PROJECT 2-4

Werite a program that calculates and prints the number of minutes in a year.

PROJECT 2-5

An object’s momentum is its mass multiplied by its velocity. Write a program that expects an
object’s mass (in kilograms) and velocity (in meters per second) as inputs and prints its momentum.

PROJECT 2-6

National flags are displayed on various Web sites, such as http:/flagspot.net/flags/. The flags
of France, Mauritius, and Bulgaria consist of flat, colored areas. Write separate programs that
display these flags.

PROJECT 2-7

Write a program that displays a 3-by-3 grid of black and white rectangles. The rectangles
should be positioned so that no two rectangles of the same color are adjacent to each other.

CRITICAL Thinking

You have an idea for a program that will help the local pizza shop handle takeout orders.
Your friend suggests an interview with the shop’s owner to discuss her user requirements before
you get started on the program. Explain why this is a good suggestion, and list the questions you
would ask the owner to help you determine the user requirements.

55

