Unit 1 Getting Started with Java

Design

Our rather crude estimate for 7 is 3.14. Obviously, more accurate estimates yield more
accurate calculations of the area. Later we see how Java itself can provide an excellent esti-
mate. Following is the pseudocode for the count angels program:

read radius

read angelSpace

read overlapFactor

area = 3.14 * radius * radius

nonOverlapSpace = angelSpace * (1.0 - overlapFactor)
numberAngels = area / nonOverlapSpace

print numberAngels

Implementation

The following code is a straightforward translation of the pseudocode into Java. Comments are
included.

/*Case study 2: count the angels
Count the number of angels that can dance on the head of a pin.
1. The user inputs are
The radius of the pinhead
The space occupied by an angel
The allowed overlap between angels subject to the restriction
that no space can simultaneously be occupied by more than two
2. The program computes
The area of the pinhead based on its radius
The amount of nonoverlapping space required by an angel
The number of angels based on the preceding two values
3. The program ends by printing the number of angels.
*/

import java.util.Scanner;

public class CountAngels {
public static void main(String [] args)({

Scanner reader = new Scanner(System.in);

double radius; //Radius of the pinhead in millimeters
double angelSpace; //Space occupied by an angel
//in square micrometers
double overlapFactor; //Allowed overlap between angels from 0 to 1
double area; //Area of the pinhead in square millimeters
double nonOverlapSpace; //Nonoverlapping space required by an angel
double numberAngels; //Number of angels that can dance on the
//pinhead

//Get user inputs

System.out.print ("Enter the radius in millimeters: ");
radius = reader.nextDouble();

System.out.print

Chapter 3 Syntax, Errors, and Debugging

("Enter the space occupied by an angel in square micrometers: ");
angelSpace = reader.nextDouble();
System.out.print ("Enter the overlap factor: ");
overlapFactor = reader.nextDouble();

//Perform calculations

area = 3.14 * radius * radius;

nonOverlapSpace = angelSpace * (1.0 - overlapFactor);
numberAngels = area / nonOverlapSpace;

//Print results
System.out.print ("The number of angels = " + numberAngels);

Discussion

So what were the mysterious errors we mentioned and what is their general significance?
There were three errors, two during analysis and one during design.

First Analysis Error

During analysis we did not consider the shape of the region occupied by an angel, overlap-
ping or otherwise. To appreciate the significance of our oversight, consider the problem of
placing as many pennies as possible on a plate without overlap. Because there are gaps
between the pennies, the answer is not obtained by dividing the area of the plate by the area
of a penny. Even if two pennies are allowed to overlap by some amount, there are still gaps.
Thus our solution is correct only if angels can mold their shapes to eliminate all empty
spaces. Unfortunately, we did not think of asking the theologians about this.

Second Analysis Error

Let us now simplify the problem and suppose that angels pack onto the pinhead without
leaving empty spaces. Now the space occupied by two overlapping angels equals the space
each would occupy alone minus the amount by which they overlap or

space for two overlapping angels
= 2 * gpace occupied by an angel -
space occupied by an angel * overlap factor
2 * gpace occupied by an angel * (1.0 - overlap factor / 2)

Thus,

space for one angel with overlap = space occupied by an angel *
(1.0 - overlap factor / 2)

and

number of angels on pinhead = area of pinhead / space for one
angel with overlap

Well, we certainly got that wrong the first time.

91

92

Unit 1 Getting Started with Java

Design Error

The radius of the pin is given in millimeters and the space requirements of an angel are
given in square micrometers. Our calculations need to take this difference in units into
account. We leave the actual correction as an exercise.

Conclusions

There are three lessons to draw from all this. First, the people who write programs usually are
not the ones most familiar with the problem domain. Consequently, many programs fail to solve
problems correctly either because they completely ignore important factors or because they treat
factors incorrectly. Second, careful analysis and design are essential and demand careful thought.
As you can see, the errors had nothing to do with programming per se, and they would have
occurred even if we were solving the problem with paper and pencil. And by the way, before writing
a program to solve a problem, we definitely need to know how to do it correctly by hand. We are
not going to make a practice of making analysis and design errors, and we did so just this once in
order to make a point. Third, just because computers perform complex calculations at lightning
speed does not mean we should have unquestioning confidence in their outputs.

3.7 Graphics and GUIs: memg Shapes and Text

The GUI programs in Section 2.7 displayed one or
more flat-colored rectangular areas. Now it is time to
learn how to fill these areas with other objects, such as

This Graphics and GUIs section

geometric shapes and text. | gives you the opportunity to
explore concepts and program- ’

develop modern graphics appli-
An application window in GUI programs has a cations and graphical user inter-

clearly defined set of responsibilities. A window estab- | faces. This material is not

lishes its initial size, decides what it will do when the | required in order to proceed with |

) b | the other chapters of the book. |
user resizes or closes it, and creates and lays out the | i
panels that appear within it. Before we create and dis- .
play other objects within a panel, we have to ask which will be responsible for them, the appli-
cation window or the panel in which they appear? Because there might be many panels and many
objects in each panel, it would be a good idea to assign at least some of the responsibilities for
managing these objects to the panels themselves. We use two principles of any good organization:

Divide the labor and Delegate responsibility.

Defining a Specialized Panel Class | ming techniques required to
|

A window does just what it did before: create a panel with a given background color. But a
panel now has the additional responsibility of setting its own background color and displaying
geometric shapes and text. To provide a panel with these additional capabilities, we define a new
type of panel by extending the Jpanel class. Our new class, called colorPanel, has all of the
behavior of a Jpanel. But a ColorPanel also knows how to draw specific shapes and instanti-
ate itself with a given background color. For example, instead of the code

JPanel panel = new JPanel();
panel.setBackround(Color.white);

Chapter 3 Syntax, Errors, and Debugging

an application window now uses the code

ColorPanel panel = new ColorPanel(Color.white);

to create a panel with a given background color. The following program sets up an application
window for all of the examples discussed in this section.

// Main application window for Chapter 3 graphics examples

import javax.swing.*;
import java.awt.*;

public class GUIWindow {

public static void main(String[] args)({
JFrame theGUI = new JFrame();
theGUI.setTitle("GUI Program");
theGUI.setSize (300, 200);
theGUI.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
ColorPanel panel = new ColorPanel(Color.white);
Container pane = theGUI.getContentPane();
pane.add(panel);
theGUI.setVisible(true);

The class colorPanel in each example extends Jpanel and includes a constructor that
expects a Color parameter. The constructor runs when the panel is instantiated and sets its back-
ground color. Here is the code for this minimal behavior:

// Example 3.5: an empty colored panel

import javax.swing.*;
import java.awt.*;

public class ColorPanel extends JPanel({

public ColorPanel(Color backColor) {
setBackground (backColor) ;

}

All we have done thus far is substitute a new class, ColorPanel, for the JPanel class used in
the examples of Section 2.7. Those example programs would have the same behavior if they used
the new class. The only difference is that the code for the application windows would be slightly
simplified.

When you’re working with more than one programmer-defined class, the source code for the
classes is usually maintained in separate files and edited and compiled separately. An easy way to
compile all of the classes in your current working directory is to use the command javac
*.java at the command line prompt. The java command to run a program is used as before,
with the byte code file that contains the main method.

93

94

Unit 1 Getting Started with Java

Coordinate Systems

Underlying every graphics application is a coordinate system. Positions in this system are
specified in terms of points. Points in a two-dimensional system have x and y coordinates. For
example, the point (10, 30) has an x coordinate of 10 and a y coordinate of 30.

The x and y coordinates of a point express its position relative to the system’s origin at (0, 0).
Figure 3-6 presents some examples of points in the familiar Cartesian coordinate system. In this
system, two perpendicular lines define an x axis and a y axis. The point of intersection is labeled
(0, 0). Increasing values of x are to the right and increasing values of y are upward.

FIGURE 3-6
A Cartesian coordinate system
y axis
(<10, 10)
n = (10, 10)
(<10, 0) (10, 0)
i #——— X axis
(0, 0)
(<10, -10) = L (0, -10)

In Java and most other programming languages, the coordinate system is oriented as shown
in Figure 3-7. Note that the only quadrant shown is the one that defines the coordinates of the
computer’s screen. In the positive direction, it extends downward and to the right from the point
(0, 0) in the upper-left corner. The other three quadrants exist, but the points in them never
appear on the screen. This is called a screen coordinate system.

FIGURE 3-7
Orientation of Java’s coordinate system

(10, 0)
(0, 0)

(0, 10) m (10, 10)

In a window-based application, each window has a coordinate system whose origin is located
at the upper-left outside corner of the window. Each integer point in this coordinate system,
extending from the origin to the window’s lower-right corner, locates the position of a pixel, or
picture element, in the window. By an integer point, we mean a point both of whose coordinates
are integers. Each panel also has its own coordinate system that is similar in form to the win-
dow’s coordinate system. In the discussion that follows, we assume that we are drawing geomet-
ric shapes and text in panels.

Chapter 3 Syntax, Errors, and Debugging 95

The Graphics Class

The package java.awt provides a Graphics class for drawing in a panel. A panel maintains
an instance of this class, called a graphbics context, so that the program can access and modify the
panel’s bitmap. The program sends messages to the graphics context to perform all graphics
operations. Hereafter, we refer to the graphics context using the variable name g. Some com-
monly used Graphics drawing methods are listed in Table 3-9. The table also shows the results
of running these methods in a window that has a single panel.

TABLE 3-9
Common methods in the Graphics class

GRAPHICS EXAMPLE CALL AND OUTPUT

METHOD

drawLine(| g.drawLine(10, 25, 40, 55) Draws a line from point
int x1, (x1, y1) to (x2, y2).
ant v,
int %2,
int y2)
drawRect (g.drawRect (10, 25, 40, 30) Draws a rectangle whose
int x, upper-left corner is (x, y)
a0t v, and whose dimensions
int width, are the specified width and
int height) height.
drawOval (g.drawOval(10, 25, 50, 25) Draws an oval that fits within a
TnEh rectangle whose origin (upper-
int vy, left corner) is (x, y) and whose
int width, dimensions are the specified

width and height. To draw a
circle, make the width and
height equal.

int height)

98 Unit 1 Getting Started with Java

FIGURE 3-8
Displaying a shape and text in a panel

= GUI Program

Hello warld!

Note that the paintComponent method first calls the same method in the superclass, using
the reserved word super. The reason is that the method in the superclass paints the background
of the panel. This effectively clears any images in the panel before they are redrawn.

Finding the Width and Height of a Panel

Occasionally, it is useful to know the width and height of a panel. For instance, one might
want to center an image in a panel and keep the image centered when the user resizes the win-
dow. The methods getwidth () and getHeight () return the current width and height of a panel,
respectively. If these methods are called before the window is opened, they return a default value
of 0. Our next ColorPanel example maintains the shapes of the previous example near the cen-
ter of the panel:

// Example 3.7: A colored panel containing a red text
// message in a blue rectangle, centered in the panel

import javax.swing.*;
import java.awt.*;

public class ColorPanel extends JPanel{

public ColorPanel(Color backColor)({
setBackground (backColor);

}

public void paintComponent (Graphics g){
super.paintComponent(g);
int x = getWidth() / 2 - 60;
int y = getHeight() / 2;
g.setColor(Color.blue);
g.drawRect(x, y, 120, 20);
g.setColor(Color.red);
g.drawString("Hello world!", x + 10, y + 15);

iy

Text Properties and the Font Class

In the context of a bitmapped display, text is drawn like any other image. A text image has
several properties, as shown in Table 3-10. These are set by adjusting the color and font proper-
ties of the graphics context in which the text is drawn.

Chapter 3 Syntax, Errors, and Debugging

40
perties

Font style

Font size

An object of class Font hgg three basic Properties: 5 flame, a style, and 4 size, The foHovving
code creates one Font object with the properties Courier bold 12 and another with the proper-

ties Arial bold italic 1 0:

new Font("Courier", Font.BOLD, 12);

]

Font courierBold12

Font arialBoldItaliclO new Font("Arial", Font.Borp + Font.ITALIC, 10);

Our finga] brogram examp]e modifies the Previous one gq that the text message s displayed jn
Courier bold 14 font,

import javax.swing.*;

ilmport java.awt.*;

Public ColorPanel(Color backColor){
setBackground(backColor);

Public voig paintComponent(Graphics g){
super.paintComponent(g);
int x = getwWidth() , 2 - 60;
int y = getHeight() / 2;
g.setColor(Color.blue);
g.drawRect(x, Y, 120, 20);
g.setColor(Color.red);
Font font = new Font("CourierW, Font.BOLD, 14);
g.setFont(font);
g.drawString("Hello world! , x 4 10, y + 15);

99

100 Unit 1 Getting Started with Java

XERCISE 3.7

1. Write the code segments that would draw the following objects in the graphics context g:
a. Afilled rectangle with corner point (45, 20) and size 100 by 50

b. Aline segment with end points (20, 20) and (100, 100)

¢. Acircle with center point (100, 100) and radius 50

d. Atriangle with vertices (100, 100), (50, 50), and (200, 200)

2. Describe the design of a program that displays @ filled blue rectangle on @ red packground.
3, How does oné compute the center point of a panel?

4. List the three propert'\es of a text font.

SUMMARY -

- ——

————————

111 this chapter, you Jearned:

@ Java programs use the int data type for whole numbers (integers) and double for floating-
point numbers (numbers with decimals).

m Java variable and method names consist of a letter followed by additional letters Of digits.
Java keywords cannot be used as names.

Final variables behave as constants; their values cannot change after they are declared.

@ Arithmetic expressions are evaluated according to precedence. Some eXpressions yield dif-

ferent results for integer and floating-point operands.
m Strings may be concatenated tO form a new string.

The compiler catches syntax errors: The JVM catches run-time errors. Logic errorss if they
are caught, aré detected by the programmer or user of the program at runtime.

@ A useful way t0 find and remove logic errors is to insert debugging output statements tO
view the values of variables.

m Javauses?a screen coordinate system tO locate the positions of pixels in a window of panel.
The origin of this system is in the upper—left corner or the drawing area, and the X and y
axes increase t0 the right and downward, respectively.

@ The programmer can modify the color with which images are drawn and the properties of
text fonts for a given graphics object.

VOCABULARY Review

Chapter 3 Syntax, Errors, and Debugging 104

Define the following terms:

Arithmetic expression Logic error
Comments Origin
Coordinate system Package
Exception Pseudocode
Graphics context Reserved words
Literal Run-time error

Screen coordinate system
Semantics

Syntax

Virus

REVIEW Questions

WRITTEN QUESTIONS

Write a brief answer to the following questions.

1. Write a pseudocode algorithm that determines the batting average of a baseball player.
Hint: To compute a batting average, divide number of hits by number of at-bats. Batting

averages have three decimal places.

2. Give examples of an integer literal, a floating-point literal, and a string literal.

3. Declare variables to represent a person’s name, age, and hourly wage.

4. Why must care be taken to order the operators in an arithmetic expression?

102 Unit1l Getting Started with Java

5.

6.

Is it possible to assign a value of type int to a variable of type double? Why or why not?

State which of the following are valid Java identifiers. For those that are not valid,
explain why.
A. length

B. import

C. 6months

D. hello-and-goodbye

E. HERE_AND_THERE

FILL IN THE BLANK

Complete the following sentences by writing the correct word or words in the blanks provided.

1.

L S N 1

In mixed-mode arithmetic with operand types int and double, the result type is always

A method’s name, parameters, and return type are also known as its
The operation that joins two strings together is called
End-of-line comments begin with the symbol

A quotient results when the ___ operator is used with two operands of type

Chapter 3 Syntax, Errors, and Debugging

PROJECTS

PROJECT 3-1

The surface area of a cube can be known if we know the length of an edge. Write a program
that takes the length of an edge (an integer) as input and prints the cube’s surface area as output.
(Remember: analyze, design, implement, and test.)

PROJECT 3-2

Write a program that takes the radius of a sphere (a double) as input and outputs the sphere’s
diameter, circumference, surface area, and volume.

PROJECT 3-3

The kinetic energy of a moving object is given by the formula KE=(1/2)mv?, where m is the
object’s mass and v is its velocity. Modify the program of Chapter 2, Project 2-5, so that it prints
the object’s kinetic energy as well as its momentum.

PROJECT 3-4

An employee’s total weekly pay equals the hourly wage multiplied by the total number of reg-
ular hours plus any overtime pay. Overtime pay equals the total overtime hours multiplied by
1.5 times the hourly wage. Write a program that takes as inputs the hourly wage, total regular
hours, and total overtime hours and displays an employee’s total weekly pay.

PROJECT 3-5

Modify the program of Project 3-4 so that it prompts the user for the regular and overtime
hours of each of five working days.

PROJECT 3-6

The Miiller-Lyer illusion is caused by an image that consists of two parallel line segments.
One line segment looks like an arrow with two heads, and the other line segment looks like an
arrow with two tails. Although the line segments are of exactly the same length, they appear to
be unequal (see Figure 3-9). Write a graphics program that illustrates this illusion.

FIGURE 3-9
The Muller-Lyer lllusion

£ GUI Program B@@

103

104 Unit1 Getting Started with Java

PROJECT 3-7

Write a graphics program that displays the coordinates of the center point of a panel in the
form (x, y). This information should be displayed at the panel’s center point and be automatically
updated when the panel is resized.

CRITICAL Thinking

During the summer before the academic year, the registrar’s office must enter new data for
incoming freshmen. Design and implement a program that prompts the user for the following
inputs:

Last name

First name

Class year (an integer)
Campus phone

After all the inputs are taken, the program should echo them as output.

