Chapter -
Lists and Arrays

Hes making a list, checking it twice. 'Gonna find out who s naughty or nice ...

SANTA CLaus Is CoMING To TowN

For seven men she gave her life. For one good man she was his wife. Beneath the ice by Snow White Falls,
there lies the fairest of them all.

VIRGINIA (KIMBERLY WILLIAMS), IN THE 10TH KINGDOM

The generation of random numbers is too important to be left to chance.

ROBERT R. COVEYOU

When a cat is dropped, it always lands on its feet, and when toast is dropped, it always lands with the
buttered side down. I propose to strap buttered toast to the back of a cat; the 2 will hover, inches above the
ground. With a giant buttered-cat array, a high-speed monorail could easily link New York with Chicago.

JoHN FRAZEE

Objectives

When you complete this chapter, you will be able to:

[Use a list to store multiple items

O Use Alice’s forAllInOrder and forAllTogether statements
3 Use random numbers to vary the behavior of a program
a

Use an array to store multiple items

141

142 introduction

5.1

In the preceding chapters, we have often used variables to store values for later
use. Each variable we have seen so far has stored a single value, which might be a
Number, a Boolean, a String, an Object, a Sound, a Color, or any of the other types
that Alice supports. For example, if we have three variable definitions like this in our
program: ’

Number result = 0.0;
Boolean done = false;
String name = "Jo";

then we might (simplistically) visualize these three variables as shown in Figure 5-1.

result[0.0 | done[false] name["Jo" |

FIGURE 5-1 Storing three values in three variables

Each variable stores a single value (of a given. type) that can be changed by the
program.

It is sometimes convenient to be able to define a variable that can store multiple
values. For example, suppose you have 12 songs (call them s,. ..s,;) in your music
player that you want to represent in a program. You could define 12 single-value vari-
ables (for example, song,, song,, song,, ..., songy,, songy;), but it would be more
convenient if you could define one variable capable of storing all 12 songs, as shown
in Figure 5-2.

playList| so | s1 | s, | 85 | 54 | 85 | %6 | 37 [88 | 8 [810 511 |

FIGURE 5-2 Storing 12 values in one variable

One advantage of this approach is that if I need to pass my song collection to a
method, I only have to pass one argument (playList) instead of 12. Also, my method
needs only one parameter.

A variable like this is called a data structure — a structure for storing a group
of data values. In this chapter, we will examine two data structures that are avail-
able in Alice:

® The list, which stores a group of values where the group’s size changes frequently

* The array, which stores a group of values where the group’s size does not change

Each structure is used for storing sequences of values, but the two have very
different properties.

L

Chapter 5 Lists and Arrays 143

The List Structurs

5.1.1 List Example 1: Hlight of the Bumble Bees

Suppose Scene 2 of a story requires a dozen bees to take off, one at a time, to defend the
honor of their queen bee. We might begin by using the Alice Gallery to build the scene as
shown in Figure 5-3.

FIGURE 5-3 The queen and her 12 bees

To make the bees take off one at a time, we could use 12 separate statements:

bee.move (UP, verticalDistance);
bee2.move (UP, verticalDistance);

beel2.move(UP, verticalDistance);

Note, however, that although the bee to which we are sending the move () message
changes, each statement is otherwise the same. Remember: any time you find yourself
programming the same thing over and over, there is usually a better way. In this case, the
better way is to create a data structure variable named bees that stores references to the
12 bees, and which we might visualize as shown in Figure 5-4.

144 Section 5.1 The List Struciure -

FIGURE 5-4 A list of 12 bees

As indicated in the caption of Figure 5-4, this kind of data structure is called a list, as in
shopping list, guest list, or play list. Alice’s list data structure can store a sequence of items,
which can be any Alice type (for example, Number, Boolean, Object, String, Color, etc.).

Given a list variable, we can use Alice’s forAllInOrder statement to send each
item in the list the message move (UP, verticalDistance):

for all bees, one item_from bees at a time {
item from_bees.move(UP, verticalDistance);

},
We will look at each of these steps separat;ly.

Defining a List Variable

We can begin by defining a playScene2() method, and then defining a list variable
within it. To create a list variable, we click the create new variable button as usual.
Because the things we want to store in the list (bees) are objects, we select Object as the
type in the dialog box that appears. We then click the checkbox labeled make a List,
which expands the dialog box with a values pane, as shown in Figure 5-5.

" "FIGURE 5-5 Creating a list variable

_ Chapter 5_Lists and Arrays 145

To store the bees in the list, we click the new item button visible in Figure 5-5. Alice
then adds an item to the list whose value is <None>, as shown in Figure 5-6 (left side).

Name: bees i

Name: [pees]

Type: < Number
Type: G Number . O Boolean

O Boolean) ® Object

‘@ Object - ‘ O Other... [string |
O Other.... |String :]
.) Values: Fimakea

Values: fei make a iitem0 = <None§ !

“ite = <None> - ol
Litem 0 [;% new ite None>
came

light :
ground

co

FIGURE 5-6 Defining initial values in a list variable

To make the value of this new item the first bee, we click the list arrow next to
<None>, choose the bee from the menu that appears, and select the entire bee, as
shown in Figure 5-6 (right side). We then repeat these steps to create new items for

each additional bee in the story, and finally click the dialog’s ok button. The result is
the list variable shown in Figure 5-7.

@ world.playScene2

i public void playScene2 () {

create new parameter

Object]] E_ﬂﬂ bees =] bee, bee2, bee3, beed, beeS, beeb, bee7, bee8, bee9, bee10, beet1, bee12] H create new variable
’ (Do Nothing i

I

FIGURE 5-7 A list variable definition

While Alice’s choice of font makes it a bit difficult to see, the form of this definition is:
Object [] bees = bee, bee2, ... beel2;

Alice uses square brackets ([and 1) to distinguish data structures from “normal” variables.

146 Section 5.1 The List Structure

Processing List Eniries

Now that we have defined a list variable, the next step is to use a new Alice statement —
the forallInOrder statement — to send the move () message to each of its items. To do
so, we click the forAllInorder control at the bottom of the editing area, and then drag
it into the playScene2 () method. When we drop it, Alice generates a 1ist menu from
which we can choose the bees variable, as shown in Figure 5-8.

@ world.playScene2
public void playScene2 (} {
Object]] [beesJ= bee, bee2, bee3, beed, bee5, beeb, bee?, bees, beed, beet0, beelt, bee12 l H Iz'eat; ;1ew variablel
(Do Nothing

FIGURE 5-8 Dragging the forallinorder statement

When we choose bees from this menu, Alice generates the forAllInOrder state-
ment shown in Figure 5-9.

(Do Nothing

el tem_from_beesiat a time {

"FIGURE 5-9 The forallInoOrder statement

With this in place, we construct the necessary move () message, using one of the
bees as a placeholder, as shown in Figure 5-10.

ml.EivFoir alt v_'b.ees "l, one @E;n_frsrﬂ:ﬁe_esata ﬂme{ o

= . move(UP‘], § meters ~ i); more...~

FIGURE 5-10 The foralliInorder statement with a bee placeholder

We then replace the placeholder with an item from the bees list. To do so, we drag
item_from_bees onto the placeholder and drop it, as shown in Figure 5-11.

Chapter 5 _ Lists and Arrays 147

- ltembfrom beesmtatlme > e

tem_from bees* ! mov'e(UP~

T 5me[ers"!), more...~ ' ‘ T ']

FIGURE 5-11 The forallInorder statement with an item from bees

The resulting loop will send the move () message to each bee in the list, one at a time,
causing them to “take off.” We can similarly add statements to make the queen bee turn to
face each bee and order it to take off. Figure 5-12 shows the completed scene method.

§ @ world.playScene2

Object]] i bees}=| bee, bee2, bee3, beed, beeb, beeb, bee7, bee8, bee9, bee10, bee11, beei2] H create new variable

» public void playScene2 {) {

For all'bees = |, on

item_from_bsesiatatime { .~ S

turnToFace(item_from_bees = | }; more...~

queenBee = |.say(GOl); fontSize =30 = | more...~

item_from_bees ~.move(UP = |, & meters = | }; more...~

FIGURE 5-12 The p.laysceneZ() method {final version)

With Figure 5-4 as the starting scene, we can trace the flow through this loop as follows:
® In the first repetition of this loop, the queenBee faces bee and says Go!; then bee
moves up five meters, because item_from_bees refers to bee.

* In the second repetition of the loop, the queenBee faces bee2 and says Go!; then
bee2 moves up five meters, because item_from bees refers to bee2.

*® In the third repetition of the loop, the queenBee faces bee3 and says Go!; then bee3
moves up five meters, because item_from_bees refers to bee3.

» This process repeats for each bee, up to the eleventh bee.

® In the eleventh repetition of the loop, the queenBee faces beell and says Go!; then
beell moves up five meters, because item_from_ bees refers to beell.

* In the twelfth (and final) repetition of the loop, the queenBee faces bee12 and says
Go!; then beel2 moves up five meters, because item_from bees refers to beel2.

Figure 5-13 shows the scene during the loop’s first, third, and last repetitions.

148 Section 5.1 The List Structure

FIGURE 5-13 Repetitions 1, 3, and 12 of the loop

The code shown in Figure 5-12 thus achieves the effect of 12 turnToFace() mes-
sages, 12 say() messages, and 12 move () messages. However it does so using only one
turnToFace () statement, one say () message, one move () message, a forAlliInOrder
statement, and a list! .

Moreover, suppose later on we decide that, to be more convincing, the scene needs
more bees taking off (for example, positioned behind those already in the scene). All we
have to do is (1) add the new bees to the world, and (2) add them to the bees list.! We
need not add any new turnToFace(), say(), or move() statements to playScene2().

In any situation for which you need to do the same thing to multiple items, a data
structure can save you a lot of work!

5.1.2 Llist Operations

The preceding example illustrates how the forallInOrder statement can be used to
process each of the items in a list in turn. It provides a very simple way to iterate (or
loop) through the entries in the list, doing the same thing to each item in the list.

You may have noticed that there is also a forAl1Together control at the bottom of
the editing pane. This can be used to create forAllTogether statements. Like the
forAllInOrder statement, the forAllTogether statement operates on a list. However,
where the forAllInorder statement performs the statements within it once for each
item in the list sequentially, the forAllTogether statement performs the statements
within it once for each item in the list simultaneously, or in parallel.

To illustrate, if we wanted all of the bees in Figure 5-3 to take off at the same time
instead of one at a time, we could rewrite the playScene2() method using the
forAllTogether statement, as shown in Figure 5-14.

I. To add new values to a list variable, just click the box of values (for example, bee, bee2, ... beel2)inits
definition.

Chapter 5 Lists and Arrays 149

@ world.playScene2

public void playScene2 () {

Objectf] (oo bees =| bee, bee2, bee3, beed, beeb, beed, bee7, bees, bee, bee10, beel1, beel2 I : create new variable

SiFor all bees | every @ item_from_bees together {
. queenBee ' .say(GO! * }; fontSize=30 - more..

item_from_bees .move(UP - , Smeters~); more...

FIGURE 5-14 Making the bees take off together

Using this version of playScene2(), clicking Alice’s Play button produces the
screen shown in Figure 5-15.

FIGURE 5-15 The bees take off together

Alice provides the forAllInOrder and forAllTogether statements to simplify
the task of processing all of the values in the list data structure. In addition to these
statements, Alice provides messages that you can send to a list variable to modify it or its
items. More precisely, if you drag a list variable into the editing area and drop it anywhere
a statement can appear, Alice generates the menu shown in Figure 5-16.

150 Section 5.1 The List Structure

FIGURE 5-16 The list methods menu

The three sections in this menu let you:

@ Set the value of the list to another list (the set value choice)
Send a message to the list (the middle portion of the menu)
Send a message to any of the items in the list (the item responses choice)
Because the middle portion of the menu is unique to lists, we will examine it next.

List Methods. The messages you can send to a list include those shown in Figure 5-17.

aList.add(0, val); .. 4 'Ci‘eate a new ifem confcmmg,val"at aList's beginning.

aList.add(i, val); ilnsert a new |tem containing val at position 1 in aList

- [the item at posmon 1 shifts to posmon i+1, and so on)

aLiSt-ba‘dd(Val)v; Create a new ifem contqining vaJ. at azist’s end
aList.remove(0); ' Remove the first item from aList
" aList.remove(di); . "Remove the item at position i from arist

(the item at position i+1 moves fo position 1, and so on)

aList.removeLast(); Remove the last item from azist

aList.clear(); Remove all items from arist

FIGURE 5-17 List methods

Figure 5-6 showed how to initially define a list with a group of values. However,
there are situations in which a program needs to modify the contents of a list as it is running.
For example, once the bees are in the air, we might want to have the queen take off too,
and add her to the bees list. The messages in Flgure 5-17 allow a program to modify a
list by adding and/or removing items.

{hapter 5 Lists and Arrays 151

Each item in a list has a position, or index, by which it can be accessed. The index of
the first item is always zero, the index of the second item is always one, and so on. To illus-
trate, Figure 5-18 shows bees again, but this time showing the index of each list item.

FIGURE 5-18 The list of 12 bees with index values

In the list messages add (i, val) and remove (i), the value of i is the position or index
at which the value will be added or removed. To illustrate, suppose we have the following list:

List aList = 2, 8, 4;

Suppose we then perform the following statements:

aList.remove(l); // remove the item at index 1 (the 8)
aList.add(0, 1); // insert 1 at the beginning
aList.add(2, 3); // insert 3 at index 2 '
alList.add(5); // append 5

As a result, the contents of aList willbe 1, 2, 3, 4, 5.

List Functions

Alice also provides function messages that we can send to a list to get information from
it, as shown in Figure 5-19.

aList.size() The number of items in aList

aList.firstIndex0f(val) | The position of the first item containing val in aList

lor -1 if val is not present in aList)

aList.lastIndexOf(val) | The position of the last item containing val in aList

(or -1 if val is not present in aList)

aList[0] The value of the first item in aList

FIGURE 5-19 List functions

continued

152 Section 5.1 The List Structure

anist[i] = _The value of the item at position i in azist
~ aList.getLastItem() The value of the last item in ai’.j.st:
aList.getRandomItem() | The valve of an item at a random position in anist

FIGURE 5-19 List functions (continued)

To use these functions, you must drag a list definition into the editing area and drop
it onto a placeholder whose type is the function’s return type. For example, the top three
functions — size(), index0£(), and lastIndexOf() — each return a Number, so if
you drop a list onto a Number placeholder, Alice will display a menu whose choices are
these messages, as shown in the left-hand menu in Figure 5-20.

FIGURE 5-20 The list functions menus

However, if you drop a list onto a placeholder whose type is the type of item in the
list (for example, object), Alice will display the right-hand menu in Figure 5-20, from
which you can choose one of the bottom four functions of Figure 5-19.

5.1.3 List Example 2: Buying Tickets

Suppose Scene 3 of a story has a line of people waiting for something (for example, to buy tickets

to a film). After the first person has been served, she turns and walk away. The remaining people

in the line then move forward, so that the person who was second is the new first person in line.
We might begin by building the scene shown in Figure 5-21.

Chapter 5_Lists and Arrays 153

FIGURE 5-21

People waiting in a line

Alice’s list data structure makes it fairly easy to animate such a scene. The basic
idea is to represent the line of people with a list containing each of the people in the
scene. Then we can use the list methods and functions to move them around, using an
algorithm like this:

wl

e -

1 personList = isis, randomGuy2, skaterGirl, skaterGuy, cleo;

2 while personList is not empty {

3 Set firstPerson to the first item in personList

4 Have firstPerson say "Two tickets please", and then "Thank you"
Have firstPerson turn left

Have firstPerson move off-screen

Remove the first item from personList

Advance the line, moving each person in personList forward

To determine whether a list is empty, we can compare its size() to zero. To get the
first item in the list, we can use the [07 function. To “advance the line” we can either use
a forAllTogether statement or a forAllInOrder statement. To remove the first item

from the list, we can use the remove (0) method.

154 Section 5.1 The List Struciure

Figure 5-22 presents an Alice version of this algorithm, using a forAllInOrder 59
statement to “advance the line.” iy .

@ world.playScene3

public void playScene3 (}{
personList= ﬁsls, randomGuy2, skaterGirl, skaterGuy, cleal|;

= <None>~<|;

T he
rson i} "g); more.. ™ : ; J
say(Two tickets please.~ |); fontSize =30 = | duration =2 seconds ~ Tmorei.< }

.say(- Thank you.=|); fontSize=30 <Imore...=

“frontPerson = |turn(LEFT =1, 025 revolutions =); mores. = - -

ontPerson - |.move(FORWARD?JL 10 meters *-~|); more...~

J
|
ersonList - |.remove{0); duration =0 seconds = I : J

e

FIGURE 5-22 Animating a line of people .

Figure 5-23 shows three screen shots of this scene, all taken during the first pass
through the while statement in playScene3 ().

FIGURE 5-23 Screen captures from playScene3 ()

To see how the people in line are moving, compare their positions against the back-
ground in each screen capture. For example, cleo is in front of the rounded window in
the leftmost capture; in the rightmost capture, she and the others have moved forward.

The list is one of the two data structures available in Alice. The other is called the
array, and we examine it next.

Chapter 5 _Lists and Arrays 155

5.2

The Array Structure

Alice’s second data structure is called the array. Like an Alice list, an array can store a
group of values, each of which can be accessed through its position or index. However,
unlike the list, the array is a fixed-sized data structure, meaning it cannot grow or shrink
as your program runs. You can still change the values of the items in an array, but once
your program begins running, its capacity (the maximum number of values it can store)
cannot change. An array is thus a somewhat less flexible data structure than a list.

Why would anyone want to use an array instead of a list? There are two answers:

. InAlice and most other programming languages, it takes less of a computer’s memory to
store a group of items in an array than it does to store the same group of items in a list.
Put differently; if you have a group of items to store and the size of the group never
changes, it is more memory-efficient to store the group in an array instead of a list,

]

In most other programming languages, items in a list cannot be accessed via index val-
ues. Instead, only the first and last item in the list can be accessed. The exact reason is
beyond the scope of our discussion, but accessing an arbitrary item from a list is much
more time-consuming than accessing an arbitrary item from an array, so most languages
don’t let you do it. So, if the solution to a problem requires a program to access arbitrary
values from a group, then it’s better to store the group in an array instead of a list. Put
differently, to access an arbitrary group item, an array is more time-efficient than a list.

To see the Alice array in action, let’s see an example.

5.2.1 Array Example 1: The Ants Go Marching

Suppose a user story has an ant marching along, singing the song “The Ants Go March-
ing.” The lyrics to the song are as follows:

The ants go marching one-by-one
Hurrah! Hurrah!

The ants go marching one-by-one
Hurrah! Hurrah!

The ants go marching one-by-one,

the little one stopped to suck his thumb,
and they all went marching

down to the ground

to get out of the rain

BOOM! BOOM! BOOM!

The ants go marching two-by-two
Hurrah! Hurrah!

The ants go marching two-by-wo
Hurrah! Hurrah!

The ants go marching two-by-two,
the little one stopped to tie his shoe,
and they all went marching

down fo the ground

to get out of the rain

BOOM! BOOM! BOOM!

The ants go marching three-by-three,
the little one stopped to climb a tree,

The ants go marching fourby-four,
the little one stopped to shut the door,

.....

156 Section 5.2 The Array Structure

The ants go marching five-by-five
The litile one stopped to take a dive,

The ants go marching six-by-six
The litfle one stopped to pick up sticks,

The ants go marching séven-by-éeven_ !
The little one stopped to pray to heaven,

The ants go marchiﬁg eightby-eight
The little one stopped to shut the gate,

The ants go marching nine-by-nine -
Hurrah! Hurrah!

Hurrah! Hurrah!

The ants go marching nine-by-nine,

the little one stopped to check the time,
and they all went marching ‘
down fo the ground

to get out of the rain
BOOMI BOOM! BOOM!

The ants go marching nine-by-nine . .

The ants go marching ten-by-fen
Hurrah! Hurrah! . -

The ants go marching ten-by-fen ,
Hurrah! Hurraht. 7 T
The ants go marching ten-by-ten,

the little one stopped to say, ‘THE END’,
and they all went marching

down to the ground

to get out of the rain

BOOM! BOOM! BOOM!

One way to build this story would be to send
times 10 verses = 100 say() messages. But many o
from verse to verse, so this approach would result in lots of wasteful, replic

Another way would be to recognize that
is counting from 1 to 10. So perhaps we cou
verses, and put statements within the for statement to make the ant s
good thinking; the difficulty is that each verse differs from the others in two ways:

e the number being sung (one, two, ..., nine, ten); and
o what the little ant does (suck his thumb, tie his shoe, ..., check the time, say “THE END”).

the ant 10 say () messages per verse
f the song’s lines are exactly the same
ated effort.

this is basically a counting problem: the song
1d use a for statement to count through the
ing a verse? This is

One solution is to make two indexed groups, one for each way the verses differ, as

shown in Figure 5-24.

1 two
2 ‘three .
3 four

FIGURE 5-24 Groups of strings

0 | suck his thumb -
1 | fie his shoe

2 climb a tree.

3 | shut the door

continued

4 five 4 take a dive

5 six 5 pick up sticks
6 seven 6 pray to heaven
7 eight 7 shut the gate

8 nine 8 check the time
9 ten 9 say 'THE END’

FIGURE 5-24 Groups of strings (continued)

If we defined two data structures (one for each group), then the for statement
could count from 0 to 9, and on repetition i, retrieve the value associated with index i
from each data structure.

Because the number of verses in the song is fixed, it makes sense to use array data
structures to store the two groups. Defining an array variable is similar to defining a list
variable, which we saw in Figures 5-5 and 5-6. The only difference is that we must specify
that we want an Array variable instead of a List variable, as shown in Figure 5-25.

[|

FIGURE 5-25 Creating an Array variable

Once we have created the array variable, we can fill it with values in exactly the
same way as we would a list (see Figure 5-6).

D o B B

158 Section 5.2 The Array Structure

Given the ability to define arrays, we can build this algorithm to solve the problem:

1 Define numberArray = one, two, three, four, five, six, seven, eight,
nine, ten; ' :

2 Define llttleAntArray suck his thumb, tie his shoe, climb a tree,
shut the door, take a dive, pick up sticks, pray to heaven, shut the
gate, check the tlme, say 'THE END'’

for each 1ndex 1] through 9 { - .
repeatedLine = = The ants go marching " + numberArray[lndex] +! by-"

3

4

5- -+ numberArray[xndex],

‘6 ant.say(repeatedLlne);

7 ant.say('Burrah! Rurrahl®);

8 ant.say(repeatedLine);. .
9. ant;séy("Hurrah! Hurrah!");

10 ané.say(repeatedLlne),

11 ’ant.53y(The: llttle one stopped ‘to "+ 11ttleAntArray[1ndex]),
12 aht.éay('and they all went marching”)

13- ant.say("down to the ground");.

14 ant.say("to get out of the rain.");
15 ant. say("BOOM! BOOM! BOOM!),
16 '}

Using this algorithm, we can build the program, as shown in Figure 5-26.

B @ marchingAnt.singSon,
publie void singSong (){ -

create new paramai

create new variak

String ({5 repeatedLine; = defauit string~ |;
strlnguf D IIMeAntArray' suck his thumb,, tie his shoe,, climb a tree,, shut the door,, take a dive,, pick up sticks,, pray to heaven,, shut the gate,, check

say(rspaaeadLlna-,)

' marchingAnt - | .say{ Hurahi. Hurraht - 1Y; duration =2 seconds = [fontSize =30 - | more... =

a gAnt = . say{ dLine - | }; duration =2 seconds - |fontSize «30 ~ | more...~

l marchingAnt < [.say{ Hurrahl Hurrahi <! }; duration =2 seconds « Ifomslzs =30~ Imore...~

! ine~|); duration =2 sacon - R
e

- , = J); duration = 2 seconds - |fontSize = 30 ~ jmors...~

marchingAnt - | say{ and they all went marching - |); duration = ?;ngﬁe =30~ {more...<
{: marchingAnt - | say(down to the ground ~ 1); duration =2 seconds — . fontSize = 30 ~ mora". -

i marchingAnt — lly(to getout of the rain - |); duration =2 seconds — ‘Ioms&a -30 frnorc e ¥
rbnan:hlngAntv say(Bboidl BOOMI BOOMi - | }; duration = 2 seconds — . fontSize = 30 ~ {more...~

Kl
| U P | D | I G G W

Ll

FIGURE 5-26 Singing “The Ants Go Marching”

Chapter 5 Lists and Arrays 159

When performed, this method (using just 12 statements and three variables) causes
the marchingant to “sing” the entire 10-verse, 100-line song!

If we add a method that makes the ant march, and then have the ant sing the song
as it marches, the result will appear something like what is shown in Figure 5-27.

the little one stopped to suck his

The ants go marching one-by-one thumb,

FIGURE 5-27 The singing ant in action

5.2.2 Array Operations

Like lists, arrays are indexed variables, meaning their iteins can be accessed using an
index value. For example, we could have written the “bees” program in Figure 5-12 using
an array instead of a list. If we had done so, we could have drawn the bees group as
shown in Figure 5-28:

] [1]l [2], [3]| [4]| [5]| [5]| [7]! [8]] [9] ’[10] [11]

bees | |

FIGURE 5-28 An array of 12 bees

We saw in Section 5.1.2 that Alice provides a variety of predefined operations that
can be used with list variables. By contrast, there are only a few operations for array vari-
ables. These are listed in Figure 5-29.

160 Section 5.2 The Armay Siructure

anArray[i] = val; Change the value at position 1 in anArrayto val

val.set(value, Retrieve the value at position i in anArray
. anArray[il); - ; ,

anArray.length Refrieve the number of values in anarray

FIGURE 5-29 Array operations

The notation anArray[i] is called the subscript operation. As shown in Figure 5-29,
there-are two versions of the subscript operation. The first one is sometimes called the
write version, because it changes (that is, writes) the value of item i of the array. The sec-
ond one is sometimes called the read version, because it retrieves (that is, reads) the
value of item i of the array. ’

If an array variable is dropped where a statement can appear, Alice displays a menu
from which you can select the write version of the subscript operation. If an array vari-
able is dropped onto a placeholder variable or value, Alice displays a menu from which
you _can select either the array’s length attribute or the read version of the subscript
operation.2

At the time of this writing, the Alice forAl1InOrder and forAllTogether statements
can only be used on a list, not on an array. Until this changes, if you want to process each of the
values in an array, you must use a for statement like this: ’

for (int index = 0; index < anArray.length; index++) {
// do something with anArray{index]

}

To illustrate, Figure 5-30 presents an alternative version of Figure 5-12 using
an array.

2. When this was written, Alice was very inconsistent in displaying these menus, for both arrays and lists. Hope-
fully, these problems will be fixed by the time you read this!

Chapter 5 Lists and Arays 161

E world.playScene2|

public void playScene2 () {

Object]] [¥]bees =| bee, bee2, bee3, beed, bees, beeb, bee7, bee8, beed, beel0, beell, beet2];

":Elforkintindex=0; inde;« 12times - - ; index++) { show complicated v...

: queenBee = tumToFace{ : bees - [index ~1) more...-

 queenBee - .say(GQO! "); fontSize=30 more...

- i bees~ [index ~]~ move{ UP~ , Smsters~); more... -

FIGURE 5-30 The bees take off using an array

This method produces exactly the same behavior as that of Figure 5-12. How-
ever, note that because we cannot use a forAllTogether statement on an array, we
cannot use an array to produce the simultaneous behavior shown in Figure 5-14
and Figure 5-15.

5.2.3 Array Example 2: Random Access

Suppose we want to build the following simple story:

Scene: A castle has two magical doors. The left door tells the right door a random
knock-knock joke.

If the left door told the right door the same joke every time, then this story
would quickly become boring and the user would not want to play the story more
than twice. However, if each time the scene is played, the left door tells a random
(that is, potentially different) knock-knock joke, we make the scene more inter-
esting and worth revisiting.

We can begin by positioning the camera and cast1le as shown in Figure 5-31.

162 Section 5.2 The Array Structure

FIGURE 5-31 The castle doors

Our next problem is to figure out how to make the doors tell a knock-knock joke.
Let’s look at several jokes, to see what is the same and what is different about each one:

L: Knockknock L: Knockknock [L Knockknock
R:,kWho's‘there? e _' - R: Who's there? A . R: \‘N,ho’s. there? -

L: Boo. S L: Who. : : L: Little old lady. -
R:Boowho? R: Who who? | R: Little old lady who?

L: Don't cry, it's just a joke. | L: Is there an owl in here? L: | didn’t know you could yodel!

Comparing these (lame) jokes, we see that knock-knock jokes have the following structure:

L: Knock-knock
R: Who's there?
L: name

R: hame who?

L: punchline

where name and punchline are the parts that vary from joke to joke.

Chapter 5 Lists and Arrays 163

If we make name and punchline array variables, then we can store multiple jokes in
them. For example, to store the three jokes above, we would define name and punchline
as follows:

String [] name = {"Boo", "Who", "Little old lady" };
String [] punchline = {"Don't cry, it’s just a joke.",
"Is there an owl in here?",
"I didn't know you could yodel!"};

Such definitions create parallel data structures in which punchline[0] corre-
sponds to name{0], punchline1] corresponds to name[1], and so on. We can visualize
them as shown in Figure 5-32.

name punchline
[0] » Boo [0]| —pr—»Don't cry, it's just a joke.
[1]] —1—» Who [1]| ~t— Is there an owl in here?
(2] p Little [2]] —+» I didn't know you could yodel!
old
lady

FIGURE 5-32 The name and punchline arrays

Once we have the parts of the jokes stored in arrays, we can tell the joke at index i
as follows:

L: Knock-knock

R: Who's there?
L: name[i]

R: name[i] who?

Lt punchlinefi]

That is, if i has the value 0, then this will tell the “Boo who” joke; if i has the value 1,
then it will tell the “Who who” joke, and so on.

Generating Random Numbers

To tell a random joke from the array, we need to generate a random number for
the index i. That is we need to set i to a value that is randomly selected from the
range of possible index values for the array. Fortunately, Alice makes this fairly

164 Section 5.2 The Array Structure

easy by providing a world function named Random.nextDouble(), as shown in

Figure 5-33.

<trine

FIGURE 5-33 The world function Random.nextbDouble ()

Using this function, we can set a Number variable i to a random number by (1) set-
ting the value of i to a placeholder value, (2) dragging the function onto the place-
holder, and (3) setting its minimum, maximum, and integerOnly attributes to
appropriate values (for example, 0, name.length, and true, respectively). Figure 5-34
shows the completed tellRandomKnockKnockJoke() method, which includes the
jokes above, plus two others.

@ world.tellRandomKnockKnockJoke

public vold tellRandomKnackKnockJoke () {
StringD) name}-] Boa, Who, Little old lady, Alice | ; Number[@j}=l g—} ;

Stringl i’;@ punchllno; - | Don‘t cry, it's Just a joke., Is there an owl Int here?, ! didn't know you could yodeli, Il iisten to you when you fisten to mel I H

doinOrder {
" castle.door2 ~ | say(Knock-knock. - !); duratlon =2 seconds ~ | fontSize =30 - more...~

FIGURE 5-34 The teliRandomKnockKnockJoke () method

Each time this method is performed, it tells a knock-knock joke selected at
random from the name and punchline arrays. By randomly generating the value of
i, and then using that same value as the index for both name[i] and
punchline[i], we ensure that the name and punchline for a given joke match one
another.

5.3

Chapter 5 Lists and Arrays 165

Random Details

The Random.nextDouble() function has two quirks to keep in mind:

® If you wish to generate an integer (that is, a whole number without decimal places like -1, 0,
1, or 1234), be sure to set the integeronly attribute to true, or else the function will pro-
duce a real number (that is, a number with decimal places like -1.25, 0.05, 98.7654, etc.).

® In Figure 5-34, the arrays contain 4 items, indexed 0, 1, 2, and 3. To generate a ran-
dom index value from the group {0, 1, 2, 3}, we specified a minimum value of 0, but
a maximum value of 4. In general, if we want to generate a random number from the
range a through b, then we should specify a as the minimum value and b+1 as the
maximum value. Put differently, whatever minimum value we specify is included in
the range of randomly generated values, but whatever maximum value we specify is
excluded from the range of randomly generated values.

Recall that in Figure 5-19, we saw that one of the messages we can send to an Alice |
list is the getRandomitem() function. In situations where we just need to retrieve one
random item from a data structure, a list and this function provide an easy way to solve
the problem.

However, we cannot use a list and the getRandomItem() function to solve the ran-
dom knock-knock joke problem (at least not as easily). Do you see why not? The issue is l
that the problem has two data structures: one containing the names and one containing
the corresponding punchlines. If we were to store the names and punchlines in two lists
and then send each list the getRandomItem() function, the randomly selected
punchline would be unlikely to correspond to the randomly selected name.3

5.3 Alice Tip: Using the partNamed () Function -

Suppose that Scene 1 of a story begins as follows:

Scene: The court of the fairy queen is crowded with fairy-courtiers talking amongst
themselves. One of the fairies announces, “Her majesty, the Queen!” The fairy queen
enters her court, and all the courtiers turn toward her. As she moves along the prome-
hade leading to her throne, each courtier in succession turns to her and bows. Upon
reaching her throne, the queen turns and says “Please rise.” As one, the courtiers turn
toward her and rise from their bows.

Looking over the nouns in the story, we might begin building this scene by creating
a “fairy court” in a woodland setting, with a promenade leading to a throne, and a crowd
of fairies flanking each side of the promenade. Figure 5-35 shows one possible realization
of this scene using various fairy, forest, and other classes from the Alice Web Gallery.

3. We could replace the two arrays in Figure 5-34 with two lists. Because Alice lists support the subscript operation,
we could randomly generate an index / and then access the item at position / in each list. However, because the
data structures’ sizes remain fixed as the program runs, using an array is preferable.

166 Section 5.3 Alice Tip: Using the partNamed() Function _

FIGURE 5-35 The court of the fairy queen

We also chose class OliveWaterblossom as the fairy queen, added her to the
world, and positioned her behind the camera (13 meters from the throne) to set up her
entry to the court.

With the scene set, we are ready to think about generating the behavior required by
the user story. We might break the actions down into the following sequence of steps:

1. One of the fairies announces, “Her majesty, the Queen!”
2. As the queen enters the court, each courtier simultaneously turns to face the camera.
3. Do together:

a. Move the queen 13 meters forward (down the promenade, toward her throne).
b. Make the queen’s wings flap.
c. As she passes each courtier, have him or her turn toward the queen and bow.

4. The queen turns 1/2 revolution (so that she is facing her courtiers).

The queen says “Please rise.”

Ji

6. Together each courtier turns toward the queen and rises from his or her bow.

Together, these steps make up an algorithm we can use for the playScenel()
method.

Chapter 5 Lists and Arrays 167

Defining The Method

What is the best way to implement this algorithm? Steps 1 and 5 require all courtiers to
take a simultaneous action, and Step 2c requires each courtier to take an action one at a
time. One way to elicit these simultaneous and one-at-a-time actions is to place the
courtiers into a list data structure. Given such a list, we can use the forallTogether
statement to make all courtiers do the same thing simultaneously in Steps 1 and 5, and
we can use the forAllInOrder statement to make them all do the same thing one at a
time in Step 2c.

With this approach, we can revise the algorithm as follows:

—

Let courtierList be a list of all the courtier fairies.

The courtier nearest the throne announces the queen.

W

For all items in courtierList together:
Each item in courtierList turns to face the camera.

4. Do together:

a. The queen moves 13 meters forward (down the promenade, toward her throne).
b. The queen’s wings flap.
c. For each item in courtierList, one at a time:

The item in courtierList turns toward the queen and bows.

5. The queen turns 1/2 revolution.
6. The queen says “Please rise.”

7. For all items in courtierList together:
Each item in courtierList turns toward the queen and rises from his/her bow.

Most of these steps are straightforward to program in Alice. However, there are two
subtle points to keep in mind as we do so.

Defining The List

One subtle part is that when we define the courtierList variable as a list of object and
then add fairies to it, the order of the fairies in the list is significant. That is, because we are
using the forAl1InOrder statement in Step 3c and this statement goes through the items in
the list from first to last, we must be careful to add the fairies to the list so that those closest
to the camera are earlier in the list and those who are farthest from the camera are later in
the list. Otherwise, the fairies will not turn toward the queen and bow to her as she moves
past them. Figure 5-36 presents a fragment of this list from the playScene1 () method.

Dbjectu..@JcourtiérList =[shadeAniseed, petalBeamweb, sprightlyReedsmoke, mabHazelnut, iSeafeather, lichenZensplder, leafF|

FIGURE 5-36 Defining the courtier list

Making A Fairy Bow

The second subtle part is generating the bowing and rising behaviors for the courtiers. It
is easy to make an individual fairy-courtier bow and rise, by “opening” the individual in

m

168 Section 5.3 Alice.Tip: Using the partNemed() Function

the object tree, selecting their upperBody component, and then sending this component
the turn () message, as shown in Figure 5-37.

}':7E3ﬁﬁéaiﬁ;3.upber30w = [.turn{ FORWARD - |, 0.25 revolutions i); more..~

FIGURE 5-37 Making an individual courtier bow

The difficulty arises when we seek to use this approach with an item from the list
within a forAllInorder or forAllTogether statement. Although each item in the list is
a fairy that has an upperBody component, we defined the courtierList variable as a list
of objects. Because not all Alice objects have upperBody components (for example,
buildings, fish, trees, etc.), Alice will not let us access the upperBody component of an
item from the list. So we can make each courtier turn and face the queen by programming:

for all courtierList, one item from courtierList at a time:
item_from_courtierList.turnToFace(oliveWaterblossom);

But we cannot make each courtier bow to the queen by programming:

for all courtierList, one item from_courtierList at a time:
item_from_courtierList.upperBody.turn(FORWARD, 0.25); // NoO!

Because the lists are lists of Objects, we can only send a list item a message (or
select a component) that is common to all Objects.

For this situation, every Alice object provides a function message called
partNamed (component) that can be sent to that object to retrieve its part named
component. In our situation, we know that every fairy in the list contains a compo-
nent named upperBody, so we can send each fairy the partNamed (upperBody) message
to retrieve its upperBody part, and then send that part the turn() message to make the
fairy bow.

To use the partNamed() function, we begin with the statement shown in Figure 5-37,
using the courtier’s upperBody component as a placeholder. We then drag the courtier’s
partNamed () function onto the placeholder, yielding the statement shown in Figure 5-38.

EL cordFlamewand < | partNamed(__~ |)}*J.tum(FORWARD - |, 026 revolutions ~ | }; more...~

FIGURE 5-38 Using the partNamed () function

If we click the list arrow for partNamed ()’s argument, and choose other. .. from
the menu that appears, Alice displays a dialog box where we can type the name of the
part we wish to access (upperBody in this case). When we do this, we get the statement
shown in Figure 5-39.

Chapter 5 Lists and Arays 169

cordFlamewand .partNamed{ upperBody) turn(FORWARD , 0.25revoitions }; more...

FIGURE 5-392 The partnamed () function

#

In the statement in Figure 5-39, cordFlamewand is a placeholder that we need to replace
with an item from the list. To do so, we can drag and drop this statement into 2 forAl1Inorder
(or forAllTogether) statement, specify the courtierList as the forAllInOrder state-
ment’s list variable, and then drag the loop’s item_from courtierList variable onto the
placeholder to replace it. The resulting statement is shown in Figure 5-40.

1: ordFI;ameA\jNan’d_: partNamed(UpperBody) fum{ FORWARD -, 02Grevotfons -), more,-

FIGURE 5-40 Replacing the placeholder with a list item

Using this same approach, we can make the courtiers rise at the end of the scene.
Figure 5-41 shows the completed playScenel () method.

create new parameter

rightlyReed: mabHazelnut, meadSeafeather, lichenZenspider, IeafF!amegllmm(| create new varlablel

cordFlamewand - .say(Her majesty, the Queen] - }; duration =2 seconds - fontSize=40 - more...
ZForall courtlerList -, every 'fg}@! Item_from_courtlerL.Ist together {
Item_from_courtierList - .turnToFace{ ‘camera -); more...

5 ‘
ZidoTogether {
Forall courtlerList~ , on g Iitem_frcm_courtlen.lst atatime {
'item_from_ccurtierLlst polntAt(oliveWater), duration=0.25 seconds ~ onlyAffectYaw =true - more...
; item_from_courtierList - .partNamed(upperBody - }:- turn{ FORWARD - | 0.26 revolutions -~ }; more...
ollveWaterblossom - .move{ FORWARD -, 13 meters -); duration =16 seconds - - more...
_oliveWater flapWings (jon=16 -, amount=1- -);
}

oliveWaterblossom = turn{ LEFT- , 05revolubons); more...

oliveWaterblossom .say(Pleaserise.); duration=2seconds fontSize=30" mors...

“iForall courtierList * , every 'oiitem_from_courtierList together {
item_from_courtierList .turnToFace(oliveWaterblossom -); more...

item_from_courtierList - .partNamed(upperBody ~) .turn{ BACKWARD ' , 0.28revaltions); more...

FIGURE 5-41 The playScenel () method {final version)

170 Section 5.3 Alice Tip: Using the partNamed() Funcfion

When we run the program, we get the desired behavior. Figure 5-42 presents three
screen captures: one partway through the forallInOrder statement, one after all have
bowed and the queen says “Please rise.”, and one at the end of the scene.

FIGURE 5-42 Screen captures from playScenel()

Components Are Objects

The partNamed () function thus provides a means of retrieving a component of an object.
The components of an object are themselves objects, so in playScenel(), we could have
defined an object variable named torso, and then used it in the forAllinOrder state-
ment as follows:

for all courtierlist, one item_from_courtierlist at a time {
item_from_courtierList.turnToFace(oliyeWaterbIossom);
torso.set(value, item_from_courtierList.partNamed(upperBody));
torso.turn(FORWARD, 0.25); ‘

}

Either approach is okay. The point is that the components of an Alice Object are
objects, and can be referred to by object variables.

Sending Messages to nul1

What happens if the object to which we send the partNamed (component) function
does not have a part named component? For example, suppose we defined two
object variables, one named partl, the other named part2, and then set their
values as follows:

partl.set(value, OliveWaterblossom.partNamed (upperBody));
part2.set(value, OliveWaterblossom.partNamed (xyz));

Chapter 5 Lists and Arrays 171

Because OliveWaterblossom does not have a component named xyz, the
partNamed () function returns a special "zero” value named null, that denotes the
absence of an 0bject. This value null is stored in variable part2, instead of a reference to
a component. We can envision these two variables as shown in Figure 5-43.

partl| N\]
part2 EI

FIGURE 5-43 Variables with non-aull and null values

Where part1 refers to the queen from the waist up, part2 refers to nothing.
If the program then erroneously tries to send a message to part2:

part2.turn(FORWARD, 0.25);

Alice will generate an error message:

Alice has detected a problem with your world:
subject must not be null.

Alice will display this error any time a message is sent via a variable whose value is
null, which Alice usually displays as <None>. This error may appear for a variety of rea-
sons, including the following:

® You deleted an object from your world to which your program was sending a message.

You deleted a variable from a method or world through which a message was being sent.
You misspelled the name of the component in the partNamed () function.

You sent the partNamed (component) function to an object that does not have a part
named component.

®

B

172 Sedtion 5.4 Chapter Summary

54

To correct the first two kinds of errors (which are by far the most common), look
through your program’s methods for statements in which a message is sent to <None>.
When you find such a statement, either replace <None> with a valid object or delete/dis-
able the statement.

To correct the second kind of error, check the spelling of the component in each
statement where you send a partNamed () message. If you find one that is incorrect, cor-
rect its spelling.

To correct the third kind of error, you must ensure that the partNamed (component)
function is only sent to objects that have a part named component. Check the parts of each
object to which you are sending the partNamed () message. If you find one that does not
have a part named component, then either rename the component in that object, or
replace that object with a different object that does have a component named component.

Chapter Summary

O An array is a data structure that uses a minimal amount of your computer’s memory to
store a sequence of items, but cannot grow or shrink as your program runs.

O A list is a data structure that can grow and shrink as your program runs, at the cost of
using some additional computer memory (compared to the array).

O The forAllInorder statement allows for sequential processing of the items in a list.
0 The forAllTogether statement allows for parallel processing of the items in a list.
O The Random.nextDouble() function provides a way to generate random numbers.

[The partNamed (component) function lets us retrieve a part of an object (usually so
that we can send it a message).

O The null value is a special “zero” value used to indicate the absence of an object. In
the editing area, Alice usually displays <None> to represent the null value.

54.1 KeyTerms

array iterate

data structure list

forAllInOrder statement null
forAallTogether statement partNamed () function
index position

item random number

Programming Projects

5.1 Using the Cheerleader class from the Alice Gallery, build a world containing 5-6
cheerleaders who lead a cheer at a sporting event. Your cheer can be either funny or
serious, and it can either be a cheer unique to your school or a standard cheer (for
example, “The Wave”).

Chapter 5 Lists ond Arrays 173

5.2 This Old Man is a silly song with the lyrics below. Create an Alice program contain-

5.3

5.4

5.5

5.6

5.7

ing a character who sings this song, using as few statements as possible.

This old man, he played one. This old man; he played two.

He played knick-knack on my drum, He played knick-knack on my shee,

with a knick-knack paddy-wack give a dog a bone. | with a knick-knack paddy-wack give a dog a bone.
This old man came rolling home. This old man came rolling home.

This old man, he played three. This old man, he played four.

He played knick-knack on my knee, He played knick-knack on my door,

This old man, he played five. This old man, he played six.

He played knick-knack on my hive, He played knick-knack on my sticks,

This old man, he played seven. This old man, he played eight.

He played knick-knack up in heaven, He played knick-knack on my gate,

This old man, he played nine. This old man, he played fen.

He played knick-knack on my spine, He played knick-knack once again,

with a knick-knack paddy-wack give a dog a bone. | with a knick-knack paddy-wack give a dog a bone.
This old man came rolling home. This old man came rolling home.

Create a city scene featuring a parade. Store the paraders (that is, vehicles, people,
etc.) in a data structure and use it to coordinate their movements. Make your parade
as festive as possible.

Build a world containing a person who can calculate the average, minimum, and
maximum of a group of numbers in his or her head. Use a NumberDialog to get the
numbers from the user. Have your person and each NumberDialog tell the user to
enter a special value (for example, -999) after the last value in the sequence has
been entered. Store the group of numbers in a data structure, and write three new
world functions — average(), minimum(), and maximum() — that take a data
structure as their argument and return the average, minimum, and maximum value
in the structure, respectively. When all the numbers have been entered, have your
person “say” the group’s average, minimum, and maximum values.

Create a scene in which a group of Rockettes do a dance number (for example, the
Can-Can). Store the Rockettes in a data structure, and use forAllInOrder and/or
forAllTogether statements to coordinate the movements of their dance routine.

Create a “springtime” scene that runs for a minute or s0, starting with an empty field
but ending with the field covered with flowers. The flowers should “grow” out of the
ground as your scene plays. Make your program as short as possible by storing the
flowers in a data structure.

Proceed as in Problem 5.6, but use random-number generation to make the flowers
appear in a different order or pattern every time your program is run.

174 Sedtion 5.4 Chopter Summary

5.8

5.9

5.10

Create a scene in which two people are talking near a not-very-busy intersection,
which uses four stop signs to control the traffic. Build the intersection using build-
ings and roads. Define two data structures: one containing a group of vehicles, and
one containing the four directions a vehicle can move through the intersection (for
example, north, south, east, and west). As your characters talk, use random numbers
to select a vehicle and its direction.

Choose an old pop song that has several unique arm or body motions and whose lyr-
ics are available on the Internet (for example, YMCA by the Village People, Walk
Like An Egyptian by the Bangles, etc.). Using Alice, create a “music video” for the
song, in which several people sing the song and use their arms or bodies to make the
motions. Make your video as creative as possible, but try to avoid writing the same
statements more than once. If you have access to a legal digital copy of the song, use
the playSound () message to play it during your video. '

Create a scene containing a group of similar creatures from the Alice gallery (for
example, a herd of horses, a school of fish, a pack of wolves, etc.). Store your group
in a data structure, and write a method that makes the group exhibit flocking behav-
ior, in which the behavior of one member of the group causes the rest of the group to
behave in a similar fashion. (Hint: designate one member of the group as the leader,
and make the leader the first item in the data structure.)

EY
i3

To.
of th
the i

of ai
man
upoi

In:

Obi

Up¢

1t not the events of our lives that shape us, but our beliefs as to what those events mean.

ANTHONY ROBBINS

Often do the spirits
Of great events stride on before the events,
And in to-day already walks to-morrow

SAMUEL TAYLOR COLERIDGE

16 understand reality is not the same as to know about outward events. It is to perceive the essential nature
of things. The best-informed man is not necessarily the wisest. Indeed there is a danger that precisely in
the multiplicity of his knowledge he will lose sight of what is essential. But on the other hand, kmowledge
of an apparently trivial detail quite often makes it possible to see into the depth of things. And so the wise
man will seek to acquire the best possible knowledge about events, but always without becoming dependent
upon this knowledge. To recognize the significant in the Jactual is wisdom.

DIETRICH BONHOEFFER

In the event of a water landing, I have been designed to act as a Sotation device.

DATA (BRENT SPINER), IN STAR TREK: INSURRECTION

Objectives

Upbon completion of this chapter, you will be able to:
J Create new events in Alice

O Create handler methods for Alice events

(d Use events to build interactive stories

176

Introduction

Most of the programs we have written so far have been scenes from stories that,
once the user clicks Alice’s P1ay button, simply proceed from beginning to end. For some
of our interactive programs, the user must enter a number or a string, but entering such
values via the keyboard has been all that we have required of the user in terms of interac-

tion with the program.

* When a user clicks Alice’s play button for a program, it triggers a change in the
program — usually creating a flow that begins at the first statement in world.my_
first_method (). An action by the user (or the program) that causes a change in the
program is called an event. For example, clicking Alice’s Play button triggers a When

the world starts event.

Alice supports a variety of events, including those listed in Figure 6-1.!

something

*While the mouse is pressed
on something

When the world starts the user the user clicks Alice’s P1lay button
*While the world is running the world is running
When a key is typed the user the user releases a keybo'ora”key
*While a key is pressed the user holds down a

keyboard key
Wwhen the mouse is clicked on | the user the user clicks the left mouse but-

ton while pointing at an object

the user holds down the left
mouse button while pointing at
an object

While something is true

*When something becomes true

the program

a condition remains true

a condition becomes true

When a variable changes

the program

a variable changes its value

camera

Let the mouse move <objects> | the user the user moves the mouse
Let the arrow keys move the user the user presses one of the
<subject> arrow keys

Let the mouse move the the user the user moves the mouse
camera

Let the mouse orient the the user the user moves the mouse

FIGURE 6-1 Alice events

1. An event marked with an asterisk (*) is accessible by (1) creating the event above it in Figure 6-1, (2) right-
clicking on that event, and then (3) choosing change to ... from the menu that appears.

S~

Chopter 6 Events 177

There are two steps to making a program respond when an event occurs:

1. Choose (or define) a method providing the behavior to occur in response to
the event.

1. Tell Alice to invoke that method whenever the event occurs.

Invoking a method in response to an event is called handling the event, and a
method that is invoked in response to an event is often called an event handler. A pro-
gram that solves a problem or tells a story mainly through events and handlers is called
an event-driven program.

In the rest of this chapter, we will see how to build event-driven programs. While we
will not cover all Alice events, we will provide a representative introduction to what they
can do.

6.1 Hundling Mouse Clicks: The Magical Doors

To let us see how an event-driven world differs from those we have built before, let us
revise the scene-story from Section 5.2.3 as follows:

Scene: A castle has two magical doors. When the user clicks on the right door, it opens; but
when the user clicks on the left door, it tells the right door a random knock-knock joke.

Because some of the behavior is the same as in the world we built in Section 5.2.3,
we will begin with that world. As before, the initial shot is as shown in Figure 6-2.

FIGURE 6-2 The castle doors

0 s ﬁr

178 Section 6.1 Handling Mouse Clicks: The Magical Doors L

We will deal with each door separately. However, before we begin, we should pre-
vent the left door from telling jokes when we run the world. To do so, we delete the
tellRandomKnockKnockJoke () message frommy_first_method() 2

6.1.1 The Right Door

You may recall from the Alice tutorials that handling mouse clicks is easy in Alice. To do
so, we follow two steps:

1. If the event should trigger behavior that requires more than one message, we define
a method that produces that behavior. This method will be the handler.

3. We create a new event in the events area that invokes the handler — either the
method we defined in Step 1, or the single message that produces the required
behavior.

To illustrate, the behavior to make the right door open can be elicited with a single
message, turn (), so we need not create a new method. Instead, we proceed to Step 2 by
clicking the create new event button and choosing When the mouse is clicked on
something from the menu that appears, as shown in Figure 6-3.

FIGURE 6-3 Creating a new mouse event

When we select this choice, Alice creates a new event in the events area, as shown below.

vents create new e EEI

When the world starts, do

Wheﬁ ‘iﬂ Is clicked on anything -

FIGURE 6-4 A new mouse event

2. Alternatively, we could achieve the same effect by deleting when the world starts do
world.my first_method() from the events area.

(hapter 6 Events 179

To satisfy the user story, we need this event to be triggered by clicking on the right
door (castle.doorl), rather than anything. To make this happen, we click the list
arrow next to anything and select castle->doorl, modifying the event as shown in
Figure 6-5.

. When -3 is clicked on castie.door! - , do Nothing -

FIGURE 6-5 A mouse event for the right door

The object from which an event originates — castle.doorl in this case — is
called the event source.

To handle this event, we can replace Nothing with the message castle.
doorl.turn(LEFT, 0.25); by opening up the castle in the object tree, selecting
doorl, and then from the methods pane of the details area, dragging the turn() message
to the events area and dropping it on Nothing. Figure 6-6 shows the resulting event.

[When 2 Iscicked on castiedoort -, do . castedoorl - um(LEFT - , 025 rovolaons -); more..

FIGURE 6-6 Handling the mouse event for the right door

Congratulations — you have just handled your first event! When we click Alice’s P1ay
button, nothing happens until the user clicks the right door, at which point it swings open.

6.1.2 The Left Door

Dealing with the left door is nearly as easy as the right door, but only because we already
have a method that makes the left door tell a random knock-knock joke (see Figure 5-33).
That is, if we had not already written world.tellRandomKnockKnockJoke (), we would
have to write a handler method for this event, as described in Step 1 above.

Since we already have a method to serve as a handler, we can proceed to Step 2 of the
event steps. To do so, we use the same approach we saw in Figure 6-3 through Figure 6-6,
but specifying castle.door2 as the source of this event, and dragging-and-dropping
world.tellRandomKnockKnockJoke () as its handler. This is shown in Figure 6-7.

1Events |create new eventl

- When the world starts, do fffv?orid.myﬁr.stfnemod(Yo

When /}9 is clicked on qasﬂo;.dooﬂ -, do castle'.d‘oqr1 < turn(LEFT -, 025 revolutions - }J; more... -

When /;é is clicked on casué.door2~- , do 5',world.téIIRandomKnockKnockJokg() -

FIGURE 6-7 Handling the mouse event for the left door

B S A i

———*_—

180 Section 6.1 Handling Mouse Clicks: The Magical Doors

That's it! Now, when we click Alice’s p1ay button, clicking on the left door produces
a random knock-knock joke, while clicking on the right door causes that door to open.

Note that, unlike past worlds we have built, world.my_first method() does
nothing in this new world. Instead, all of the interesting behavior lies in the handler
methods, which are triggered by the event of the user clicking the mouse.

6.1.3 The Right Door Revisited

If we test the world thoroughly, we find that the right door opens correctly the first time
we click on it. However if we subsequently click on the right door again, it turns left
again (precisely what we told it to do). The mistake lies in the logic we used in defining
how that door should behave. Such mistakes are called logic errors. A better response to
a mouse click on the right door would be to open the door if it is closed and to close the
door if it is open.

It is important to see that it is okay to revise the user story when testing reveals a
weakness. Just as a filmmaker may rewrite a scene the night before it is shot, a program-
mer may have to rewrite a part of the user story to improve the overall program.

Generating the new behavior requires more than one message, so we will write a
handler method and invoke it in place of the turn{) message shown in Figure 6-6.

Design

To design this method, we can revise the right door part of the user story as follows:

When the user clicks on the right door, if it is closed, it opens; otherwise, it closes.

Notice that the revised story contains the magic word if. This strongly suggests that
the method will need an if statement.

Programming: Storing the Door’s State

One way to produce this new behavior is to add a new property to the castle, to indicate
whether or not its right door is closed.3 To do so, we select castle in the object tree,
click the properties tab in the details area, and then click the create new variable but-
ton, as we saw back in Section 3.3.

The right door is in one of two states: either it is closed or it is open. This means that
we can represent whether or not the right door is closed with a Boolean variable named
rightDoorClosed, using true to represent the closed state and false to represent the
open state. Since the door is closed at the outset, its initial value should be true, as
shown in Figure 6-8.

3. Since this is a characteristic of the right door, such a property really should be defined in castle.doorl.
Unfortunately, Alice only lets you add properties, methods, and questions to an object at the “top” level of the
object tree, so the best available place to store this property is castle.

Chapter 6 Events 181

Jin) themeVolume =1~
{ /T bDoTheme = false
: f;@rightDoprCIosed = true -

create new variable

FIGURE 6-8 Storing the state of the castle’s right door

When the user clicks on the right door, the handler method for that event can use
an if statement to determine which way to turn() it (LEFT or RIGHT), and then update
the value of rightbDoorclosed from true to false (or vice versa) to reflect the door’s
changed state.

Programming: Defining the Handler

We create a handler method the same way as any other method: by choosing the methods
tab in the details area, clicking the create new method button, naming the method, and
then defining its behavior. As usual, if a handler method affects the behavior of a single
object, it should be defined within that object; otherwise it should be stored in the
world. Figure 6-9 shows the castle.openorCloseRightDoor () method.

Q castle.openOrCloseRightDoor
public vold openOrCioseRightDoor () {

e rowpramr]|

create new vaﬂablel ,

ZidoInOrder {
EZE}K(castle.rightDoorClosed -) {
; castle.door? = tumn{ LEFT -, 0.26 revolutions~); more...
}eise{
castle.door! -+ turn(RIGHT |, 0.26 revolutions }; more...
b)

- castie.sightDoorClosed * sot{ value, 1 castierightDoorClosed }; more...

¥

FIGURE 6-9 Handling clicks on the castle’s right door

The last statement in Figure 6-9 uses the logical not operator () we saw in Section 4.1.4
to invert the value of rightbDoorClosed {rom true to false when opening the door, and
from false to true when closing the door.

The approach shown in Figure 6-9 can be generalized into a standard pattern for sit-
uations in which an object can be in one of two states (for example, open-closed, in-out,
on-off, etc.) to switch the object from one state to the other. We can generalize the pattern
for such two-state behavior as follows:

182 Section 6.1 Handling Mouse Clicks: The Magical Doors

if (booleanStateVariable) {
// do what is needed to change the object
// from the first state to the second state
} else {
// do what is needed to change the object
// from the second state to the first state

}

booleanVariable = !booleanVariable. // update the state variable

Programming: Handling the Event

Given the openorcloseRightDoor () handler method shown in Figure 6-9, we can fin-
ish the program by specifying that it be the handler for the When the mouse is
clicked on castle.doorl event, by dragging the new method and dropping it on top
of the previous handler (the castle.doorl.turn() message). Figure 6-10 shows the
resulting events area. :

Events |create new eventl

* When the world starts, do

i.my first method ();'

When ,‘ﬁ is éllcked on castle.doort - d :ét!e'.'opéﬁﬁrﬁldrs‘é!'i’ligﬁ‘tﬁéq:{(), e

orldtellRandomKnockKnockJoke(), S

FIGURE 6-10 The (revised) events area

Now, a click on the closed right door opens it, and a click on the open right door
closes it.

6.1.4 Event Handling Is Simultaneous

One tricky thing about events is that two events can occur almost simultaneously, requir-
ing their handlers to run at the same time. For example, in the “castle doors” program we
wrote in this section, a user could click on the left door and then click on the right door,
before the left door finishes the joke. Figure 6-11 shows two screen captures under these

circumstances.

Chapter 6 Events 183

6.2

Knock-knock.

FIGURE 6-11 Handling simultaneous events

As shown in Figure 6-11, Alice handles such simultaneous events quite well. The
first (left) screen capture shows the left door beginning its knock-knock joke while the
right door is opening. The handlers for the left and right doors thus run simultaneously,
When the right door’s handler finishes, the left door’s handler keeps running, as seen in
the second screen capture.

Handlers running simultaneously usually work well, but if two running handlers
both modify the same property of an object, a conflict may arise. For example, to tell a

knock-knock joke, the left door’s handler sends both doors say() messages. If the right _

door’s handler also sent either door a say() message, then the simultaneous perfor-
mance of both handlers would interfere with the joke and create a conflict. To avoid such
conflicts, avoid designing programs in which two different events simultaneously modify
the same property of the same object. '

6.1.5 Categorizing Events

In this section, we have seen how to handle a mouse event — an event that is triggered
when the user moves the mouse or clicks a mouse button. A keyboard event is triggered
when the user presses a keyboard key. Because they are initiated by a user action, mouse and
keyboard events are both known as user events. By contrast, a program event is triggered
when the world starts running, or the program changes the value of a variable or condition.

Handling Key Presses: A Helicopter Flight Simulator

Now that we have seen how mouse click events can be handled, let’s look at keyboard events.

S T

e e

184 Section 6.2 Handling Key Presses: A Helicopter Flight Simulator

6.2.1 The Problem

Scene: Catastrophel The mayor's cat is lost, bringing your city's government to a halt. As
the city's only helicopter pilot, you have been asked to help find the mayor’s cat. You find
yourself in the cockpit of a running helicopter at an airport outside the city. Fly the heli-
copter and find the mayor’s cat.

6.2.2 Design

We can build the scene using the classes from the Alice Gallery (see below), but let’s first
spend a few minutes thinking what the user must do: how he or she will fly the helicopter.

Flying a helicopter is complicated: the user needs to be able to make the helicopter
move up, down, forward, backward, and turn left or right. It would be difficult to elicit all
six of these behaviors using a mouse, so we will instead use keyboard keys for each of
them. After a bit of thought, we might decide to operate the helicopter as follows:

To make the helicopter ascend (take off), use the ‘2’ key. To descend (land), use the ‘@’
key. When the helicopter is in the air, use the up and down arrow keys to move it forward
and backward. Similarly, when the helicopter is in the air, use the left and right arrow
keys to turn it left and right.

These keys are chosen for their:

» Mnemonic values: ' is the first letter in ascend, and 'd’ is the first letter in descend,
making these keys easy to remember. Likewise, the up, down, left, and right arrow keys
point in the directions we want the helicopter to move, making their meanings easy to
remember.

» Convenient positions: ‘a’ and 'd' are near one another on most keyboards, allowing
the user to easily control the helicopter’s elevation with two fingers of one hand.
Likewise, the four arrow keys are usually grouped together, allowing the user to easily
control the helicopter’s forward, backward, left, and right motion with the fingers on
the other hand.

It is important to consider human factors when building interactive stories. If the
story requires complex behaviors, make the controls for your user as convenient and easy
to use as possible. Making programs easy to use is an important aspect of programming
known as usability.

6.2.3 Programming in Alice

To construct the scene, we can build an Alice world containing an airport, a city terrain,
an assortment of buildings, a helicopter, and a (Cheshire) cat. After arranging the build-
ings to resemble a small city, we place the cat somewhere within the city {exactly where is
for you to find out), position the helicopter at the airport, and then position the camera
to be peering out the front of the helicopter. We then set the camera’s vehicle property

Chapter 6 Fvents 185

to be the helicopter, so that any message that moves the helicopter will also move
the camera.

Making the Helicopter’s Propellor Spin

The helicopter's engine is running when the story begins, so its propellor should be spin-
ning when the world starts. The Helicopter class has a method named heli blade()
that continuously spins its propellor and rotor. By using this method as the handler
for Alice’s default When the world starts event (see Figure 6-12), the helicopter’s pro-
pellor begins spinning as soon as we press Alice’s Play button.

IEvents |create new event]

When the world starts, do

FIGURE 6-12 Making the helicopter’s propellor spin

Making the Helicopter Ascend

A helicopter must be in the air before it can go forward or backward, turn left or right, or
descend. As a result, it makes sense to define the helicopter.ascend() method first,
while keeping those other operations in mind.

Our other five operations must to be able to determine if the helicopter is in the air.
(If it is not, those operations should do nothing.) To store this information, we can create
a Boolean property for the helicopter named inTheair, initially false, as shown in
Figure 6-13.

FIGURE 6-13 The helicopter.inTheAir property

With this property in place, we can define the ascend () method as shown in Figure 6-14.

s
{

186 Section 6.2 Handling Key Presses: A Helicopter Flight Simulafor

13 helicopter.ascen

1 public void ascend {) {
Number 1:%MAX_HEIGHT = 12442 create new variable

~*doinQrder {
helicopter.inTheAir _set{ value, true), more...
=i { helicopter .distanceAbove{ ground) more... <= MAX_HEIGHT M
helicopter .move(UP , 1meter) duration=05 seconds style = BEGIN_AND_END_ABRUPTLY more...
Yelse{
{Do Nothing
}

FIGURE 6-14 The ascend() method

Since helicopters cannot fly infinitely high, we first define a constant named
MAX_HEIGHT and set its value to the maximum altitude a helicopter has attained (accord-
ing to the Internet, 12,442 meters). The body of the method then sets helicopter.
inTheAir to true, and moves the helicopter up 1 meter if it has not already attained the
maximum altitude. To smooth the animation, we set the move() message’s style
attribute to BEGIN_AND_END_ABRUPTLY. To make it move upwards at a reasonable rate,
we set its duration attribute to 0.5 seconds, which effectively makes the helicopter
ascend at 2 meters per second.

With the ascend () method defined, our next task is to associate it with the 'a’' key-
board event. To do so, we click the create new event button in the events area, and
select When a key is typed, as shown in Figure 6-15.

. When the mouse is clicked on something
While something is true -
When a variable changes
Let the mouse move <objects>
t et the arrow keys move <subject>
Let the mouse move the camera
L et the mouse orient the camera

Alice then generates the When a key is typed cvent shown in Figure 6-16.

i

Chapter 6 Fvents 187

 When any key [typed, do Nothing - |

FIGURE 6-16 The when a key is typed event

If we use this event to make the 'a"' key trigger the ascend () method, then each press
of the "a' key will move the helicopter up 1 meter. Put differently, to climb just 100 meters,
the user would have to press the 'a' key 100 times, which is no fun for the user!

A better approach is to use the Wwhile a key is pressed event from Figure 6-1.
As indicated there, we can convert a When a key is typed event to aWhile a key is
pressed event by right-clicking on the when a key is typed event, and then selecting
change to -> While a key is pressed from the menu, as shown in Figure 6-17.

typed, do Nothing - |

FIGURE 6-17 Changing when a key is typed info While a key is pressed

Selecting this choice causes Alice to replace the when a key is typed event with
aWhile a key is pressed event, as shown in Figure 6-18.

During: <None> ~ |
End: <None>~ ' ;

FIGURE 6-18 The while a key is pressed event

As seen in Figure 6-18, this event allows three different handlers to respond to one
key event:

® Begin: a handler here is performed once, when the key is first pressed.
® During: a handler here is performed continuously, as long as the key remains down.

® End: a handler here is performed once, when the key is released.

For the problem at hand, we will only need one of these parts: the During part.

To specily that we want the "a’ key to trigger this event, we click the list arrow next to
any key and choose letters->A from the menu that appears, as shown in Figure 6-19.

o e AL A 8t

Z.’
|
|.
i
i
!

188 Section 6.2 Handling Key Presses: A Helicopfer Flight Simulator

While anyk s pressed
Bec Space
D”'i“ Enter

Ei; Up

Down

Left

Right

letters ~ » -

e A

numbers | g
o4

D

i
|
i
i
i
I
1

create new parameter

Aranta naws uariakla

x s any key

FIGURE 6-19 Making "a" irigger an event

We then make the ascend () method the handler for the buring part of this event,
as shown in Figure 6-20.

Events [create new event|

-When the world starts, do helicopter.heli blade ();
] “While A] ispressed
o Begin: <None>
: During: : helicopter.ascend{ };
End: <None> -

FIGURE 6-20 Associating "a' with helicopter.ascend ()

With this event defined, holding down the 'a’ key will make the helicopter
ascend smoothly into the air, and set helicopter.inTheAir to txue.

Making the Helicopter Descend

To make the helicopter descend, we write a descend() method to serve as a handler
for the 'd’ keyboard event. If we think through its behavior, it has two things to
accomplish:

{. If the helicopter is above the ground, the helicopter should move down | meter.

2. Otherwise, the helicopter.inTheAir property should be set to false.

b Events 189

Figure 6-21 presents a definition for descend () that achieves both of these goals.

O neticpiarsecesa Q helicopter.descend e
B = L e
public void descend () { | create new parameter

~if{ helicopter .distanceAbove(ground) more... >0 1

helicopter .move{ DOWN , 1metar) duration=0.25 saconds style = BEGIN_AND_END_ABRUPTLY more...

Yelse{
helicopterinTheAir .set{ value, false); more...

Our method first checks to see if the helicopter is above the ground. If not, it sets the
inTheAir property to false. Since the ascend() and descend() methods control the heli-
copter’s vertical movement, they are responsible for changing the value of inTheair when nec-
essary. No other methods should modify this property (though they will read its value).

If the helicopter is above the ground, our method moves it down 1 meter. As in ascend(),
we set the style of the move () method to BEGIN_AND_END ABRUPTLY to smooth the anima-
tion. Unlike ascend (), we set its durationto 0.25 seconds, so that the helicopter descends at
a rate of 4 meters per second (to simulate the effect of gravity on its descent).

We can associate the descend() method with the 'd' event using the same
approach we used for 'a’ in Figure 6-15 through Figure 6-19. The result is the event
shown in Figure 6-22.

“While B ispressed
: Begin: <None>
During: . helicopter.descend();
End: <None>

o

FIGURE 6-272 Associating 'd with telicopter.descend()

With this event in place, we can now use 'd" key to land the helicopter!

The Arrow Keys

As we saw in Figure 6-1, Alice provides a Let arrow keys move <subject> event. You
might be tempted to use this event to control the helicopter in the program, by creat-
ing an event like that shown in Figure 6-23.

A
Let move camera
shilz)

LOonmol uss

190 Section 6.2 Handling Key Presses: A Helicopter Flight Simulator

This kind of an event works great in many situations, and it would be nice if it worked
in ours. The problem for us is that a helicopter should rot move unless it is in the air. If we
were to use this event, then the arrow keys would cause the helicopter to move, even
when it is “parked” on the ground! Moreover, Alice provides no easy way to modify the
behavior triggered by this event. As a result, we will not use this event in the program.
Instead, we will define four separate events: one for each of the four arrow keys.

The good news is that we will not need four separate event handlers. As we shall
see, two methods are all we need to handle all four arrow events.

Making the Helicopter Turn

To make the helicopter turn left or right, we could define two separate methods like we
did for ascending and descending. However, these methods would be nearly identical,
differing only in the direction we want the helicopter to turn. Instead of defining separate
methods, we will use a single method, and pass an argument (LEFT or RIGHT) to specify
the direction we want the helicopter to turn. The basic logic is as shown in Figure 6-24.

]
create new varlablo]

@ helicopter.turnSlightly E& e
public void turnSlightty (String .{%] direction) {

"SHf(helicopterinTheAlr=){

* “mig fdirection - == LEFT~ -
mllcop'ter; “.tdm(LEFT , 0.02 revolutions - | i; duration -026 seconds ~ sxyle -BEGINJNd_END_ABRU?T_LYQ imore...~

¥ yelse{

© & hellcopter - -turn{ RIGHT ~ ', 002 tevolutions |) duretion =026 seconds - styla =BEGIN_AND_END_ABRUPTLY ‘more... -
L

; Yelse{

. (Do Nothing

34

FIGURE 6-24 The turnslightly() method

We named the method turnslightly(), to keep it distinct from the existing
turn() method, and because it only turns the helicopter a small, fixed amount
(0.02 revolutions).

With this definition to serve as a handler, we can associate it with the left and right
arrow keys using the approach shown in Figure 6-15 through Figure 6-19, but passing
Left as an argument to the handler for the left arrow key event, and Right as an argu-
ment to the handler for the right arrow key event. Doing so produces the two events
shown in Figure 6-25.

Chapter 6 Events 191

'ﬁ'While _'_-J: is pressed. :
i Begin: <None>~ |
© During: | helicopter.tumnSiightly { direction = LEFT <); '~ |
End: <None> - | : W
= While ﬂ:d is pressed
Begin: <None> = :
elicopter.turnSlightly { direction = RIGHT -~ i);;f‘— :
End: <None> ~ | T

FIGURE 6-25 The left and right arrow events

Using these events, we can turn the helicopter left or right, but only when it is in
the air..

Moving the Helicopter Forward or Backward

Our final operations are to move the helicopter forward or backward in response to the
up and down arrow keys. As with turning the helicopter, we can do both of these in a sin-
gle method, by passing FORWARD or BACKWARD as an argument to specify which direction
to go. As in turnslightly(), this method must only let the helicopter move if it is in the
air. Figure 6-26 presents a definition for this method, which we have named go().

create new parameter

create new varlablo'

% Jelse{
& (Do Nathing
S

FIGURE 6-26 - The go () method

To make the helicopter move forward twice as fast as it goes backward, we use
a distance of 5 meters for each, but a duration of 0.25 seconds for forward and
0.5 seconds for backward. In each case, we use the BEGIN_AND END_ABRUPTLY
style to smooth the animation.

With a handler in place, all we have to do is associate it with the appropriate up

and down arrow key events, using the same approach we have seen before, as shown in
Figure 6-27.

S

192 -5 Alice Tip: Using 30 Text

White 1| ispressed
Begin: <None>
During: helicopter.go(direction =FORWARD);
End: <None>
White | Ispressed
Begin: <None>
During: helicopter.go direction =BACKWARD };

End: <None>

At this point, our program is operational, provided there is someone there to explain
to users what they are supposed to do. In the next section, we will see how to add

instructions.

In the last section, we built a working helicopter flight simulator. However, for a program
with such a complex user interface (the user must use both hands and operate six keys),
it is a good idea to present some operating instructions when the program begins.

To do so, we return to Alice’s Add Objects screen, and click the create 3D Text
button (at the far end of Alice’s Local Gallery), as shown in Figure 6-28.

When this button is clicked, Alice displays the add 3D Text dialog box shown in
Figure 6-29.

Chapter 6 Events 193

FIGURE 6-29 The add 3p Text dialog box

Using this dialog box, we can replace The quick brown fox with any textual infor-
mation we want to appear in our world, such as:

® instructions for the user
® anopening title for the story
® closing credits for the story
and so on. We can specify that the text be displayed in a particular font using the Font
drop-down box, and make the text bold or italic using the B and 1 buttons.
To make the instructions for the helicopter, we can type the text shown in Figure 6-30.

o fiy the helicopter, press:
‘a' to ascend,

'd" to descend,
left-arrow to turn left,
right-arrow to turn right,

up-arrow to go forward,

down-arrow to go backward, and

the spacebar to hide or view these instructions

FIGURE 6-30 Instructions for the flight simultor

When we click the ok button, Alice inserts a three-dimensional version of these
instructions into the world, and names it To fly the helicopter. To discuss it more
conveniently, we will right-click on it and rename it instructions.

194 Section 6.3 Alice Tip: Using 3D Text

6.3.1 Repositioning Text that Is Off-Camera

If we have moved the camera from its original position, Alice will add new 3D text at a posi-
tion that is off-camera. To position the text in front of the camera, we can use these steps:

I

[\

[o8}

Right-click on instructions in the object tree, and then choose methods->
setPointOfView(<asSeenBy)->camera. This moves the text to be in the same

position and orientation as the camera.

Right-click on instructions in the object tree, and then choose methods->
move (<direction>, <amount>)->FORWARD->10 meters. This moves the text for-
ward so that we can see it. However since its point of view is like that of the cam-
era, its front is facing away from us, making it backwards to our view.

Right-click on instructions in the object tree, and then choose methods->
turn(<direction>,<amount>)->LEFT->1/2 revolution. This spins the text
180 degrees, making it readable to us.

From here, we can use the controls at the upper right of the Add objects window

to resize and reposition the text as necessary to make the instructions fit the screen.

We will make the instructions appear or disappear whenever the user presses the

spacebar. One way to make this occur is to make the instructions move with the camera,
so that the spacebar event handler just has to make them visible to make them appear, or
invisible to make them disappear. To make them move with the camera, we set the
instructions.vehicle property to camera in the details area. At the same time, we set
the instructions.color property to yellow, to (in theory) make them show up well.

6.3.2 Adding a Background

Unfortunately, when we view the results of our work, the instructions are nearly
impossible to read, as can be seen in Figure 6-31.

4.

This approach is simple because the camera moves with the helicopter which flies throughout the world. For text
that should only appear once (like titles or credits), it makes more sense to build a dedicated scene for displaying
the text, and then moving the camera to and from that scene when necessary.

Chapter 6 Events 195

FIGURE 6-31 Instructions that are hard fo read

e e e e e

S e T et

To improve their visibility we can add a background behind the instructions. To
make such a background, we can add an object from the Shapes folder in Alice’s Local
Gallery, as shown in Figure 6-32. -

et e s bl it s

T

Search Gallery

FIGURE 6-32 Alice’s shapes folder

There, we find a Square class that (since our view is rectangular) we can use as a
background for the instructions. If we drag and drop it into the world, we can use the
controls at the upper right of the Add objects window to resize the square to fill the
screen, and reposition the square so that it is behind the instructions. (Or reposition

196 Section 6.3 Alice Tip: Using 30 Text

the instructions to be in front of the square.) When we are finished, we can increase
the contrast by setting the square.color property to black, and using right-click-
>methods to make the 1ight turn to face these instructions.’> The result is the easier-to-
read screen shown in Figure 6-33.

You are in a helicopter. Toflyit,

'8 to ascend
d' to descend,
left-arrow to turn left,
right-arrow to turn right,

up-arrow to go forward,
down-arrow to go backward, and
the spacebar to hide or view these instructions.

FIGURE 6-33 Instructions that are easy to read

Since we want the background to move with the instructions, we set the
square.vehicle property to be instructions.

This approach can be used to create any kind of on-screen text we want to appear in
the story, such as titles or credits. Once we have one 3D text object in the right position,
we can add others to the world, and move them to the same position by using right-click-
>methods->objectName.setPointOfView(<asSeenBy>) to move new text to the posi-
tion and orientation of the existing 3D text.

6.3.3 Making Text Appear or Disappear

We are almost done! Our next task is to write an event handler that makes the
instructions and square (the instructions’ background) disappear when they are
visible, and appear when they are invisible, so that the user can make them appear or
disappear using the spacebar.

This is another example of the two-state behavior we saw back in Figure 6-9. How-
ever, instructions and square already have an isShowing property that indicates
whether or not they are visible, so we need not define any new properties. Instead, we
can just toggle instructions.isShowing and square.isShowing to elicit the desired
behavior, as shown in the toggleInstructionVisibility() method in Figure 6-34.

5. If we leave the light as it is, some portions of the 3D text may be darker than others, if the text is in the shadows.
By making the light face the instructions, we illuminate the text uniformly, eliminating such shadows.

Chapter 6 Fvents 197

create new parameter

create new variable | |

| ¥; duration =0 seconds - ! more...~

J; duration =0 seconds ~ :fmor

FIGURE 6-34 Toggling the visibilify of instructions and square

When this method is performed, it uses the : (NOT) operator to invert the square
and instruction objects’ isShowing properties. That is, if isShowing were true for
each object before the method was performed, isShowing is false for each of them after
the method finishes. Conversely, if isShowing was false for each of them before the
method runs, isShowing is true for each after the method finishes.

To finish the program, we must make this method the handler for spacebar events. To
do so, we can use the when a key is typed event shown in Figure 6-16, replace any
with space, and then drag the world.toggleInstructionVvisibility() method onto
Nothing to make it the event’s handler. The result is the event shown in Figure 6-35.

%

FIGURE 6-35 Associating space with world.toggleInstructionVisibility()

Now, when the program begins running, the instructions appear as shown in
Figure 6-33. When the user is ready and presses the spacebar, the instructions and
background disappear, revealing the scene behind them. The scene that appears
depends on the position and orientation of the camera. Figure 6-36 shows the scene.

198 Section 6.4 Alice Tip: Scene Transitional Effects for the Camera

FIGURE 6-36 After the user presses the spacebar

The black object visible in the upper-right corner of Figure 6-36 is the helicopter’s
rotor blade.

At this point, we have a version of the program that is sufficient for testing with
users. For additional enhancements (for example, adding a title, closing, and so on), see
the Programming Problems at the end of the chapter.

If 3D text objects or backgrounds are to be fixed in place in front of the camera, they
should be the last objects you add to a world or scene. The reason is that they will usu-
ally lie between the camera and any objects you subsequently place in the world; if you try
to click on these latter objects, the 3D text or background will intercept your click.

6.4 Alice Tip: Scene Transitional Effects for the Camera

In Section 2.4, we saw how to use Dummies to mark camera positions, and how to use
the setPointOfView() message to change the position of the camera to that of a
dummy. This approach provides a convenient way to shift the camera from its position at
the end of a given scene to a new position at the beginning of the next scene.

Instead of instantaneously jumping from the end of one scene to the beginning of
the next scene (a transition called a cut), filmmakers often use special camera effects like
fades or wipes to smooth the transition between scenes. Such transition effects can

Chapter 6 Events 199

make the transition between scenes seem less abrupt and jarring to the viewer, or be used
to convey a sense of time elapsing between the scenes..

Alice does not provide any built-in transitional effects. However, it does provide us
with raw building blocks that we can use to create our own. With a little time and effort,
we can build credible transitional effects. In this section, we will see how to do so.

6.4.1 Setup for Special Effects

Before we see how to create the effects themselves, we need to do a bit of setup work, The
basic idea is to add four black shutters or “flaps” outside of the camera’s viewport, that we
can manipulate to create the effects. These shutters should be positioned at the top-left-
right-bottom positions outside of the camera’s viewing area, as shown in Figure 6-37.

topShutter —— |

leftShutter — | - the <«—— rightShutter
cameras

viewport

<“—— bottomShutter

FIGURE 6-37 Surrounding the camera with four shutfers

To create such shutters in Alice, we add four square objects to a world; change
the color property of each square to black; change the vehicle property of each
square to the camera; rename them topShutter, leftShutter, rightShutter, and
bottomShutter; and position them as shown in Figure 6-38.

world]

FIGURE 6-38 Using four squares for shutters

A s
*

200 Section 6.4 Alice Tip: Scene Transitional Effects for the Comera

Moving each square to a position outside of the camera’s viewing area is tricky,
because we cannot easily drag them to the right position. Instead, we can position a
square at the center of the screen, and then drag it towards the camera until it com-
pletely fills the viewing area. We can then use right-click->methods->objectName.
move (<direction>,<amount>) with the appropriate arguments to move the square just
outside the viewing area, using trial-and-error to find the right distance. (For us, this dis-
tance was about 0.08 meters.%)

With shutters in place, we can perform a variety of special effects by writing meth-
ods that move the shutters. We perform such effects using complementary pairs of meth-
ods, in which one method “undoes” the actions of the other.

6.4.2 The Fade Effect

Our first effect is a fade effect, which causes the entire screen to gradually darken until it is

completely black, and then lightens, exposing a new scene. To achieve this effect, we write

two complementary methods: fadeToBlack() and fadeFromBlack(). We can perform
the fade-to-black effect by setting the topShutter’s opacity to zero percent, moving it

down to cover the camera’s viewport, and then setting its opacity back to 100 percent.

With the screen dark, we can move the camera to its position at the beginning of a
new scene without the user seeing the scenery flash by.

With the camera in place for the new scene, we can perform a fade-from-black
effect by setting topShutter’s opacity to zero percent, moving it up to its original posi-
tion, and setting its opacity back to 100 percent, so that the topShutter is exactly as it
was at the beginning of the fade-to-black effect.

Fade to Black

Using the topShutter, we can achieve the fade-to-black effect as follows:
1. Set the opacity property of topShutter to 0 percent, so that it is invisible.]
2. Move topShutter down so that it is in front of the camera’s viewing area.

3. Set the opacity property of topshutter back to 100 percent, making it visible. |

For Steps 1 and 2, the duration should be 0 so that the steps happen instantaneously.
For Step 3, the duration will determine how long the fade takes. While we could make this
duration last a fixed length of time, a better approach is to let the sender of this message spec-
ify how long the fade should take. To let the sender pass this fade time as an argument, we
must define a parameter to store it, and set the duration attribute of Step 3 to that parame-
ter. Figure 6-39 shows the resulting definition, which we define within camera.

6. To move the LeftShutter left and the rightShutter right, we had to turn each 180 degrees, as the way
they were facing caused the LEFT and RIGHT directions to move them the opposite way.

Chapter 6 Events 201

create new variable |}

. L : v R
topShutter —|.set{- opacity, 0 (0%)"”5); duration =0 seconds ~ fmore...—“ : - HE . H

H

topShutter - | move(DOWN:+1, 0.1 meterc = |); duration=0 seconds ~' | more...~ . - Bl
topShutter - |.set{ opacity, 1(100%) - | }; duration = fadeTime seconds - i more...~ : R

FIGURE 6-39 The fadeToBlack () method

- With this method, the message camera.fadeToBlack(5); will cause the screen to
darken over the course of five seconds. You may have to adjust the distance you move
‘topShutter, depending on its placement and size with respect to the camera.

Fade From Black .
- The fade-from-black method has to “undo” everything the fade-to-black method did, in

the reverse order, so as to leave the topShutter in its original position:

1. Set the opacity property of topshutter to 0 percent.

2. Move topShutter up so that it is out of the camera’s viewing area.

3. Set the opacity property of topShutter to 100 percent. -~ . . °

As before, we should allow the sender to specify the effect’s time. In this method, it

controls the duration of Step 1, while Steps 2 and 3 occur instantaneously,

as shown in
Figure 6-40.

FIGURE 6-40 The fadeFromBlack () method

202 Section 6.4 Alice Tip: Scene Transitional Effects for the Camera

With these two methods, the messages:

camera.fadeToBlack(4);
camera.setPointOfView(dummyForNextScene); duration

camera.fadeFromBlack(3);

=0

will cause the screen to change from light to dark over the course of four seconds at the
end of one scene, and then change from dark to light over three seconds, with a new
scene in view.

Note that fadeToBlack() and fadeFromBlack() should ahways be used in pairs,
because each manipulates topShutter in a complementary way.

6.4.3 The Barndoor Edge Wipe Effect

Edge wipe effects are transitions in which one or more edges move across the screen to
hide the end of one scene and expose the beginning of the next scene. One kind of edge
wipe transition is the barndoor wipe, in which the shutters move like the doors of a barn,
sliding closed at the end of a scene and then opening on a new scene. Two common
barndoor edge wipes are:

® vertical, in which the “doors” close and open from the sides of the screen.

KXX

XXX

®* horizontal, in which the “doors” close and open from the top and bottom

of the screen.
AVAYAY.S

In this section, we will show how to use the shutters to achieve the vertical effect.
The horizontal effect is similar and is left for the exercises.

Vertical Barndoor Effects

We can perform a vertical barndoor close effect by simultaneously moving the left and
right shutters towards one another. As before, the best approach is to let the sender of
the message pass the effect’s time as an argument, and then use that argument’s parame-
ter as the duration value for each shutter's movement. We define this method within

camera, using the definition shown in Figure 6-41.

@ camera.verticalBarndoorClose

s
create new variable |12

}; duration =time seconds - style = BEGIN_AND_END_ABR

public void verticalBarndoorClose { Number -{iz3time) {

"EidoTogether {
" leftShutter - .move(RIGHT - , shutterL.RDistance meters

rightShutter - ;move(LEFT -, shutterLRDistance meters -); duration = time seconds

i

3
|
:
;
style = BEGIN_AND_END_ABRU}
é

FIGURE 6-41 The verticalBarndoorClose () method

H
}
i
i

Chapter 6 Events 203

To simplify changing the distance the left and right shutters must move, we defined
a camera property named shutterLRDistance, which we then used to control the shut-
ter movements.

The complementary effect — the vertical barndoor open effect — can be achieved
by simultaneously moving the left and right shutters apart, as shown in Figure 6-42.

; camera.verticalBarndoorOpen
rticalBarndoorOpen { Number f}@ﬁmg ¥

public void ve

FIGURE 6-42 The verticalBarndoorOpen () method

Using these two methods, a programmer can send messages like this:

camera.verticalBarndoorClose (4);
camera. setPointOfView(dumyForNextScene) ; duration = 0
camera.verticalBarndoorOpen(3);

to “close the door” over the course of four seconds, shift the camera to the next scene,
and then “open the door” over three seconds. Because they act as complementary opera-
tions, these methods should be used in pairs, or the shutters will not be in place for sub-
squent transitions.

The horizontal barndoor edge wipe is similar, but involves moving the top and bottom
shutters instead of the left and right shutters. Building this effect is left as an exercise.

6.4.4 The Box Iris Wipe Effect

Our last effect is a different wipe effect called an iris wipe, in which the screen is dark-
ened except for an area called the iris that shrinks (the iris is closing) at the end of a
scene, and expands (the iris is opening) to expose a new scene. This effect is usually used
to center the viewer’s attention on something in the scene, which is encircled by the iris
as it closes.

We can define a “box iris close” effect using the shutters, by simulta-
neously moving all four shutters towards the center of the camera’s view-
port. As in the preceding effect methods, we let the sender of the message
specify the time the effect should take. For added flexibility, we also let the
sender specify what percentage the iris should close, as shown in Figure 6-43.

P Ve

XXX

—

204 Section 6.4 Alice Tip: Scene Transitional Effects for the Camera

i AR

@ camera.boxlrisClose

ToClose,) {

(percentToClose~ f* camera.shutterlL.RDistance ~ ‘) jr ! }; more...~

style = BEGIN_ABRUPTLY_AM

< —.rﬂn‘p‘v;(”i_“EFl"I, IeﬂRightDistanceagfersvl Y
mShutter - |.move({ UP - |

FIGURE 6-43 The boxIrisClose() method

We first compute how far to close each shutter, by multiplying the parameter
percentToClose by each shutter’s close distance. We then simultaneously move each
shutter that distance using the value of parameter time as the duration. As shown in
Figure 6-44, when this method runs, the shutters outline a shrinking box that con-
tains roughly percentToClose of the screen area.

FIGURE 6-44 The box iris effect (closing)

The complementary boxIrisopen () method is similar, as shown in Figure 6-45.

Chapter 6 Events 205

ey @ camera.boxlrisOpen

publi¢ void boxirisOpen Number ercentToOpen } { ' :
24 upbownDistance = 0~ {; Numb B : oo i [oreate new variabie]

duration = time seconds ~ stysa = BEGIN
); duration = time seconds — * style = BEGIN,

FIGURE 6-45 - The boxIrisopen () method

With these methods, we can now create interesting transitions:

camera.boxIrisClose(3, 0.75);. .
// do something interesting inside the iris
camera.boxIrisClose(2, 0.25); :
// move camera to the next scene
camera.boxIrisOpen(5, 100);

6.4.5 Reusing Transition Effects

If you search on the Internet for terms like transition, effect, fade, and wipe, you can find
many other transition effects that can be defined using techniques like those we pre-
sented in this section. (To define them, you may need to add more shapes to.the camera.)
We hope that this section has provided you with an introduction into how: such effects
can be created. However, once we have defined a nice group of transition effects, how do
we reuse them in different programs? B .

Unfortunately, the save object as... technique presented in Section 2.3 will not
save properties that are objects, so with the camera’s shutters being Squares, we cannot
rename, save, and import the modified camera into a different world and have its shut-
ters come with it, even if we were to make the four shutters properties of the camera.’

Instead, we define all of these transitions in- a “template world” we call
TransitionEffects that contains nothing but the camera, the 1ight, the ground, and
the squares we use for the transitions. For any story in which we want transitions, we open
this TransitionEffects world as the starting world for the story, and then use File->
Save world as... to save it using a name appropriate for that story. Of course, this
means that we must plan ahead and know in advance that we will be using transitions in
the story. This is one more reason to spend time carefully designing your program before
you start programming. :

This was true when this book was written. It may not be true by the time you read this. Check and see!

206 Section 6.5 Chapter Summary

6.5 Chapter Summary

01 We can create new events in Alice, including both mouse and keyboard events.

0 We can write methods that act as event handlers.

01 We can associate event handlers with specific events.

3 We can use 3D text to add titles, instructions, and credits to a world.

1 We can use the Alice square shape as a background for 3D text, and to create “special
effects” for transitions between scenes. Alice shapes can be used as “building blocks”
to build other structures in Alice.

6.5.1 Key Terms

event logic error
event-driven program mouse event
event handler program event
event source transition effect
handling an event two-state behavior
interactive program usability

keyboard event user event

Programming Projects

6.1

6.2

6.3

6.4

Choose one of the robots from the Alice Gallery, and provide events and handlers so
that the user can control the robot using the keyboard. For example, use the arrow
keys to make the robot go forward, backward, left, or right; use other keys to control
the robot’s arms (or other appendages). Build a world in which the user must navi-
gate the robot through obstacles.

Using the dragon.flapWings(); method we wrote in Section 2.2.1, build a short
story in which a dragon flies from place to place in search of adventure, landing periodi-
cally to eat, talk, and anything else required by your story. Make dragon. £lapWings ()
the handler of a While something is true event, so that the dragon automatically
flaps its wings whenever it is above the ground.

Build a world containing a puzzle the user must solve. Place characters in the world
who can provide hints to the puzzle’s solution when the user clicks on them. Let the
user navigate through the world using the arrow keys.

Add the following enhancements to the helicopter flight simulator program we built
in Sections 6.2 and 6.3 (in increasing order of difficulty):

a. Add a “title” screen that names the program, and describes the problem to be
solved.

b. Add a “congratulations” screen that appears when the user finds and clicks on
the cat.

c. Modify the program so that when the helicopter descends over the roof of any of
the buildings, it lands on the roof instead of passing right through it.

d. Modify the program so that if the helicopter collides with anything in the world as
it moves forward, backward, left, or right, the helicopter “crashes” and the world
displays a "better luck next time" screen.

6.5 Build methods to perform the following transition effects:

a. Build a method fadeTo(somecoior, fadeTime); that lets the sender specity
the color to which the screen should fade, and fadeFrom(faderime) that com-
plements fadeTo(). Then revise the fadeToBlack() and fadeFromBlack() '
methods so that they use fadeTo() and fadeFrom(). ;

b. Build a method barWipeCover (direction, time); that, at the end

of a scene, moves a single shutter from one of the edges to cover the

screen; and a method barWipeUncover(direction, time); that
complements barWipeCover(). The direction argument should be
either LEFT, RIGHT, UP, or DOWN.

In a diagonal wipe, a shutter crosses the screen from one corner to the

opposite corner. Write complementary methods that perform the two

parts of a diagonal wipe.

d. A bowtie wipe is like a barndoor wipe, but the shutters coming from
the sides are wedges that form a bow-tie when they first touch one
another. Write complementary methods that perform the two parts of
a bowtie wipe.

e. A rotating octagonal iris wipe is an iris wipe in which the iris is a rotating
octagon rather than a rectangle. Write complementary methods that
perform the two parts of a rotating octagonal iris wipe.

0

6.6 Choose a popular game like chess, checkers, mancala, master mind, etc. Create a
board and pieces for the game. Add event handlers that allow the user to move the
pieces interactively.

6.7 Using the carrier and FighterPlane classes from Alice’s Web Gallery, create a !
carrier-jet simulation, in which the user must fly the fighterPlane, taking off from
and landing on the carrier.

6.8 Using the WhackaMoleBooth class from the Alice Gallery amusement Park folder,
program a whack-a-mole game in which the mole pops its head out of a random hole
in the booth for a short, random length of time before ducking down again, and the

user tries to bop the mole with the bopper. Play a sound each time the user success-
fully bops the mole.

6.9 Proceed as in Problem 6.8, but make your program a continuously running series of
games. Limit each game to some fixed length of time (for example, 60 seconds).
Have the user enter his or her name at the beginning of a game. Your program
should keep track of how many times the user bops the mole during the game, and
when the time expires, display (a) that number as the user's score for this game, and
(b) the top five scores since the program began running. Play a special sound if the
user beats the highest score (becoming the new top score)

6.10 Design and build your own original, interactive computer game.

Al

Alice Standard Methods

Alice Standard Methods

Alice methods are messages that we can send to an object commanding it to do some-
thing. The object then responds with a behavior (hopefully the one we intended). The
following table provides a complete list of Alice’s standard methods, which are the com-

mands to which all Alice objects will respond.

i

obj.move(dir,dist);-

\ppendix A

and Functions

obj moves dist meters in direction dir = Up,
DOWN, LEFT, RIGHT, FORWARD, or BACKWARD

obj.turn(dir, ravs);

obj turns revs revolutions in direction LEFT,
RIGHT, FORWARD, or BACKWARD (that is, about its
UD- or LR-axis) SR

obj.roll(dir, revs);

obj rotates revs revolutions in direction LEFT or
RIGHT (that is, about its FB-axis)

obj.resize (howMuch);

obj's size changes by a factor of howMuch

obj.say(message);

obj says message (via a cartoon balloon)

obj.think(thought) ;

obj thinks thought (via a cartoon balloon)

obj.playSound (soundrile);

obj plays the audio file soundriie

obj.moveTo(obj2);

obj's position becomes that of obj2

(obj's orientation remains unchanged)

obj.moveToward(obj2,dist);

obj moves dist meters toward the position of obj2

continued

209

obj.moveAwayFrom{obj2,dist);

obj moves away from ob3j2, dist meters from its
current position

obj.orientTo{obj2);

obj's orientation becomes that of obj2

lob3's position remains unchanged)

obj.turnToFace(obj2);

ob7 rotates about its UD-axis until it is facing obj2

obj.pointAt (obj2);

ob7j rotates so that its FB-axis points at obj2's center

obj.setPointOfView(obj2);

obj's position and orientation change to that of obj2

obj.setPose(pose);

obj assumes the pose specified by pose

obj.standUp();

ob7 rotates so that its UD-axis is vertical

obj.moveAtSpeed(dir, mps) ;

obj moves direction UP, DOWN, LEFT, RIGHT,
FORWARD, or BACKWARD at mps meters/sec (for
duration secs)'

obj.turnaAtSpeed(dir, rps);

ob7 turns direction LEFT, RIGHT, FORWARD, or
BACKWARD af rps revolutions/sec (for
duration secs)

obj.rollAtSpeed(dir, rps);

obj rolls direction LEFT or RIGHT at zps revolu-
tions/sec (for duration secs)

obj.constrainToPointAt (obj2) ;

ob4 points at obj2 for the duration of this message

1. To make obj accelerate: use obj .moveAtSpeed(dir, speed), make speeda variable, and use a doTogether
block to simultaneously perform the moveAt Speed () method while changing the value of speed.

Appendix A Alice Standard Methods and Functions 211 ;

A2 Alice Standard Object Functions

Alice functions are messages we can send to an object to ask it a question. The object -
responds by producing a result — the answer to our question. The following table provides a
complete list of Alice’s standard functions — the questions that all Alice objects will answer:

obj.isCloseTo(dist, obj2)

true, if obj is within dist meters of ob3j2;

false, otherwise

obj.isFarFrom(dist,obj2)

true, if obj is at least dist meters away
from obj2;

false, otherwise

obj.distanceTo(obj2)

the distance between obj and ob72's centers

obj.distanceToTheLeftOf (obj2)

the distance from the left side of ob72’s bounding
box to ob3j's bounding box (negative if ob7 is not
left of ob72)

obj.distanceToTheRightof
(obj2)

the distance from the right side of ob372’s bound-
ing box to ob3's bounding box (negative if ob7 is
not right of ob72)

obj.distanceAbove (obj2)

the distance from the top of ob72’s bounding box
to obj's bounding box (negative if ob7 is not
above ob32)

obj.distanceBelow(obj2)

the distance from the bottom of ob72's bounding
box to ob3j's bounding box (negative if ob7 is not
below ob72)

obj.distanceInFrontOf (obj2)

the distance from the front of ob72's bounding
box to ob3’s bounding box (negative if ob7 is not
in front of obj2)

obj.distanceBehind(obj2)

the distance from the back of obj2’s bounding
box to obj’s bounding box (negative if obj is not
in back of ob72)

obj.getWidth ()

the width ({LR-axis length) of ob3’s bounding box

obj.getHeight ()

the height (UD-axis length) of ob3’s bounding box

obj.getDepth()

the depth {FB-axis length) of ob3’s bounding box

obj.isSmallerThan(obj2)

true, if ob72's volume exceeds that of ob7;

false, otherwise

continued

212 Section A.2 Alice Standard Object Functions

obj.isLargerThan(obj2)

true, if obj's volume exceeds that of obj2;

false, otherwise

obj.isNarrowexrThan(ob3j2)

true, if obj2's width exceeds that of ob3;

false, otherwise

obj.isWiderThan(obj2)

true, if obj's width exceeds that of obj2;

false, otherwise

obj.isShorterThan(obj2)

true, if obj2's height exceeds that of ob3;

false, otherwise

obj.isTallerThan(obj2)

true, if obj's height exceeds that of ob32;

false, otherwise

obj.isToTheLeftOf (obj2)

true, if obj's position is left of ob72’s left edge;

false, otherwise

obj.isToTheRightOf (obj2)

true, if ob3's position is right of ob7 2’s right edge;

false, otherwise

obj.isAbove(obj2) true, if obj's position is above ob72's fop edge;
false, otherwise
obj.isBelow(ob3j2) true, if obj’s position is below ob3j2’s bottom edge;

false, otherwise

obj.isInFrontOf (obj2)

true, if obj's position is before obj2's front edge;

false, otherwise

obj.isBehind (obj2)

true, if obj's position is in back of obj2’s
rear edge;

false, otherwise

obj.getPointOfview()

the point of view (position + orientation) of ob7

obj.getPosition()

the position {with respect fo the world’s axes) of ob7

obj.getQuaternion()

the orientation with respect to the world’s axes)
of obj

obj.getCurrentPose()

the current Pose (position + orientation of subparts)
of obj

obj.partNamed (piece)

the subpart of obj named piece

Appendix A Alice Standard Methods and Functions 213

A3 Alice World Funcﬁons

Alice world functions are implementations of commonly needed computations. The
following table provides a complete list of Alice’s world functlons

true, lf ais false
false, otherwnse Fou
(a &8 by R : true, if a'qnd’bqrebotﬁrtfﬁ'e;. .
' ’ : : o false, if aorbis false - :
@B e fether o b v
' B ’ ‘ false, ‘if neither a ndr bis true :
a==1>b - R true, if a ond b have the same value
v 'false otherwise ,
al=bhb tzue, if a and b have different values,)
false, otherwrse
a<p o e | true, if a’s value i is less thcn bs vclue'
‘ / | false, otherwise =
as>b Lo Tl true, ifa 's value is greater thcm b's volue
: AR | false, otherwrse R
a<=b - SR true, |fasvcr|uerslessthanorequcltobsvclue
. L | false, ofherwwe e s
a>=b. SR Y, o true, if a's value is greater than or equal to
: e T : ' b's value; :
false, otherwise
Random.nextBoolean ()) a pseudo-randomly chosen true or false value
Random.hextDoubl,e() R a pseudorandomly chosen number v
a+ b , ‘ - the string consisting of a Fo”owed by b
: ' ' {concatenation)
what.toString () o : the string representation of what (strlng
R conversion) - :
NulberDialog(questipn) a number entered by the user in response fo
C | question

continued

214 Section A.3 Mlice World Functions

BooleanDialog (question)

true if the user responds to question by
clicking the dialog box's Yes button; £alse
otherwise.

Stringbialog(question)

a string enfered by the user in response to
question

mouse.getDistanceFromLeftEdge ()

the number of pixels the mouse is from the left
edge of the window (corresponds to x of an
[x,y] coordinate)

mouse.getDistanceFromTopEdge ()

the number of pixels the mouse is from the top
edge of the window (corresponds to y of an
[x,y] coordinate}

getTimeElapsedSinceWorldstart ()

the number of “ficks” since the world began
running

getYear()

a number representing the current year

getMonthOfYear ()

a number representing the current month (Jan-0,
Feb-1, efc.)

getDayOfYear ()

a number representing the current day of
the year

getDayOfMonth () a number representing the current day of
the month
getDayOfWeek () a number representing the current day of the

week (Sun-1, efc.)

getDayOfWeekInMonth()

a number for how many times the current day
of the week has occurred in the current month

isaM() true if the current time is between midnight
and noon;
false, otherwise
isPM() true if the current time is between noon and
midnight;
false, otherwise
getHourOfAMOrPM the hour value of the current fime, 12-hour format
getHourOfDay the hour value of the current time, 24-hour format
getMinuteOfHour the minute value of the current time

continued

Appendix A Alice Standard Methods and Functions 215

getSecondOfMinute

the second value of the current fime

Math.min(a, b)

the minimum of a and b

Math.max(a, b)

the maximum of a2 and b

Math.abs (a) the absolute value of a
Math.sqrt (a) the square root of a ’
Math.floor (a) the largest integer smaller than a
Math.ceiling(a) the smallest integer larger than a
‘Math.sin(a)y "7 T ‘the sine of a

Math.cos(a) - the cosine of a-

Math.i:ari(a) the tangent of a

Math.asin(a) the angle whose sine is a
Math.acos (a) the angle whose cosine is a
Math.atan(a)

the angle whose tangent is a

Math.atan2(x, y)

the polar coordinate angle associated with
Cartesian coordinate (%, y) . =

Math;pow(a,,b)”

-a rqiééd fo the power b (éb)y o

Math.natural log of(a)

the number x such that ex ==ae being
Euler’s number SR, e

Math;exp(a)

Euler's number e raised to the power a (e%) -

Math.IEEERémainder(a, b)

the remainder of a/b using infeger division

Math.round(a)

the integer whose value is closest to a

Math.toDegrees (r)

the angle in degrees corresponding to
radians

Math.toRadians (d)

the angle.in radians corresponding fo
degrees d '

superSquareRoot (a, b)

the B root of a

getVector(right, up, forward)

an xy-z vector [x==right, y== up,

z==forward]

Hundreds of years before there were computers, programming languages, or loop statements,
mathematicians were defining functions, many of which required repetitive behavior, One way
to provide such behavior without using a loop is to have a function or method invoke itself,
causing its statements to repeat. Such a method (or function) is called recursive. To illustrate,
suppose we were to define a method for Alice’s camera named repeatRoll() as follows:

void camera.repeatRoll() {
camera.roll (LEFT, 1);
camera.repeatRoll();

When invoked, this method will make the camera roll left one revolution, and then it will
invoke itself. That second invocation will make the camera roll left one revolution, and
then it will call itself. That third invocation will make the camera roll left one revolution, and
then it will call itself, and so on. Thus, the result is an “infinite” repetition, or infinite recursion. !

To avoid infinite repetition, recursive methods and functions typically have (1) a Number
parameter, (2) an if statement that only performs the recursion if the parameter’s value
exceeds some lower bound, and (3) a recursive call within the i statement that passes a
value smaller than the parameter as an argument. The net effect is that the function or
method counts downward toward the lower bound, typically O or 1. To illustrate, we might
revise the preceding repeatRol1 () method as follows:

void camera.repeatRoll (Number count) { // the parameter count

if (count > 0) { // if statement guards

camera.roll (LEFT, 1); the recursive call
camera.repeatRoll (count - 1);

1. Since each recursive call consumes additional memory, the looping behavior will eventually end — when the pro-
gram runs out of memory. However. we will become tired of the camera rolling long before that occurs!

217

218 Introducion

When invoked with a numeric argument z, this version of the function will roll the camera
n times and then stop. For example, if we send the message camera.repeatRoll(3);

1. This starts repeatRoll(3), in which parameter count ==

[

The method checks the condition count > 0. B

Since the condition is true, the method (a) rolls the camera left 1 revolution, and
(b) sends the message camera.repeatRoll(2);.

W

4. This starts repeatRoll(2), a new version in which parameter count ==

The method checks the condition count > 0.

S

6. Since the condition is true, the method (a) rolls the camera left 1 revolution, and
(b) sends the message camera.repeatRoll(1l);.

7. This starts repeatRoll (1), a new version in which parameter count ==
8. The method checks the condition count > 0.

9. Since the condition is true, the method (a) rolls the camera left 1 revolution, and
(b) sends the message camera.repeatRoll(0);.

10. This starts repeatRoll(0), a new version in which parameter count ==
11. The method checks the condition count > 0.

12. Since the condition is false, the method terminates; flow returns to the sender of
repeatRoll (0) — repeatRoll (1) — the version where count ==

13. The version in which count == 1 terminates; flow returns to the sender of
repeatRoll(1l) — repeatRoll (2) — the version in which count == 2.

14. The version in which count == 2 terminates; flow returns to the sender of
repeatRoll(2) — repeatRoll(3) — the version in which count == 3.

15. The version in which count == 3 terminates; flow returns to the sender of
repeatRoll(3).

Steps 1 through 11, in which the repeated messages are counting downward toward
the lower bound, are sometimes called the winding phase of the recursion. Steps 12
through 15, in which the chain of recursive messages terminate, are sometimes called
the unwinding phase of the recursion.

Recursion thus provides an alternative way to achieve repetitive behavior. When the
recursive message is the last behavior-producing statement in the method, as follows:

void camera.repeatRoll (Number count) {
if (count > 0) {
camera.roll (LEFT, 1);
camera.repeatRoll (count - 1); // the last statement

it is called tail recursion, because the recursive message occurs at the end or “tail” of the
method. Any function defined using tail recursion can be defined using a loop, and vice

et v s i

S

Appendix B Recursion 219

versa. But in Section B.2, we will see that one recursion method can produce behavior that
would require multiple loops.

Tail Recursion

Suppose that at the end of Scene 1 of a story, the main character goes to sleep at 11 p.m.,
and the camera zooms in to a closeup of the clock in his or her bedroom. Shot 1 of Scene 2
begins with that same clock, showing the time to be 11 p.m. Suppose that our story calls
for the clock’s hands to spin, indicating that time is “flying ahead.” When the hands
reach 3 a.m., a fairy appears and works some sort of mischief on the sleeping main char-
acter. (Exactly what mischief the fairy works is left up to you.)

To build the scene, we can go to the Alice Gallery, add a bedroom from the
Environments folder, add a Dresser from the Furniture folder, add a mantleClock
from the objects folder, and add oliveWaterblossom from the People folder as our
fairy. To set the scene, we can manually advance the clock’s hands to 11 p.m. (using right-
click->methods->mantleClock.roll() messages), make OliveWaterblossom smaller,
position her next to the clock, set her opacity to zero, and then position the camera
appropriately. Our scene thus starts as shown in Figure B-1.

o : 1————— wall of bedroom

—— mantleClock

FIGURE B-1 Beginning of Scene 2

220 Section 8.1 Tail Recursion

To follow the story, we need a way to make the clock’s hands spin forward to 3 a.m.
Since this is a counting problem, we could use a for loop; but for variety, let’s use tail
recursion. The basic algorithm is as follows:

f
Algorithm: advance-the-clock’s-hands hours hours
Given: hours, the number of hours to spin the clock’s hands forward

1 1f hours > 0:
a Spin the hour and minute hands forward one hour
b advance-the-clock’s-hands hours-1

Building a mantleClock.advanceHands () method this way is straightfor-
ward. However, when we perform the recursion by dragging and dropping the
mantleClock.advanceHands () method into the same method, Alice warns us
that we're sending a recursive message, as shown in Figure B-2.

ust dropped in creates 5"r9§UfslVg mémbd'call": We recommend that you understand:

* what recursion Is before making a call llke this. Are you sureyou wantto 'dé this

Yes; | understand what | am dolhg.J r "No, 1 made this call aCcldehﬁ]ly,J

FIGURE B-2 Alice’s recursion warning dialog box

Since we think we know what we are doing, we click the Yes, I understand what
I am doing. button. The resulting method is shown in Figure B-3.

H ® mantleClock.advanceHands

{BdoTogether {
1 mantleClock hourHand - _rofl(LEFT ', 0.0833333333333333 revoluions —); style = BEGIN_AND_END_ABRUPTLY ° mo

mantieGlack minuteHand - roll(LEFT - , 1 rvotion |); stylo =BEGIN_AND_END_ABRUPTLY __ more..
'::},, e e - . ; e e ; e
“mantleClock.advanceHands (hours=‘:1: (hours~ —=1-:) - ¥

}else{
(Do Nothing

}

FIGURE B-3 An advanceHands () method

Appendix B Recursion 221

When invoked with a positive hours value, this method spins the clock’s hands for-
ward one hour, and then invokes itself recursively with hours-1 as an argument. The]
method thus “counts down” recursively from whatever hours value it receives initially, 4
until it is invoked with an hours value of 0, at which point the recursion terminates. %
#

We can use this method to build the playScene2shotl() method, as shown in
Figure B-4.

T

orld. : é
public void playScene2Shot1 () { 3

bdalnd}derr{ o
mantieClock.advanceHands(ho

OliveWaterblossorm - _ set(opacity, 1(100%) -/); more..- ' !

OlivéWﬁtérblossofﬁj ,sayk I'm fg_eliné ;f_lschlevéué.; - | X Huratiop =2 seconqs‘{ fféﬁisize =30~ ‘more...~ ;
! P i’her fairy ‘does éomrrﬁretvl'.xving maglcal T 7 v 7
l FIGURE B-4 The playScene2shot1() method :

[When performed, the scene begins with the setup shown in Figure B-1. The
advanceHands (4) message then spins the clock’s hands forward four hours, after which
| OliveWaterblossom appears and says she’s feeling mischievous, as shown in Figure B-5.

{r I'm feeling mischievous.

FIGURE B-5 The end of Shot 1 of Scene 2 ’

I....lllIlllllllIl.l..l.-.IllllllllllIIlIlIIIlllIl---IIIlllllllllIIIlIIIllIlIllIlllllllll....'..----

222 Section B.2 General Recursion

If you compare the definition of the advanceHands () method with the repeatRoll()
method we described earlier, you'll see that both follow the same basic pattern:

Simpliﬁed Pattern for Tail Recursion:

void tailRecursiveMethod (Number count) {
if (count > LOWER_BOUND) {
produceBehaviorOnce();
tailRecursiveMethod(count-1);

where:

produceBehavioroOnce() produces the behavior to be repeated.

A method that follows this pattern will produce results equivalent to those produced
by the following nonrecursive pattern:

void nonRecursiveMethod(Number count) {
for (int i = count; i > 0; count--) {
produceBehaviorOnce();

}
}

Tail recursion provides an alternative way to solve counting problems and other
problems in which solutions require repetition. In the next section, we will see that use-
ful work can be done following the recursive call.

B2 General Recursion

Suppose that Scene 3 of our story begins the same way as Scene 2: with a closeup of the clock
in the main character’s bedroom showing 11 p.m., the next night. In this scene, our story calls
for time to fly ahead eight hours to 7 a.m., once again indicated by the clock’s spinning hands.
Then 01 iveWaterblossom appears, once again intent on mischief. In this scene, her mischief
is to reverse time everywhere except for the main character, so that upon waking up after eight
hours of sleep — fully rested — it will be 11 p.m. again! To indicate that time is flowing in
reverse, we must spin the clock’s hands backward eight hours.

We could accomplish this by using our advanceHands () method to spin the clock’s
hands forward eight hours, and then writing a reverseHands () method to make the
hands spin backward eight hours, using either tail recursion or a for loop. Instead, let’s
see how recursion lets us perform both of these steps in one method.

The key idea is to use recursion’s winding phase to spin the hands forward (as before), and
then to use the unwinding phase to make the hands spin backward. In between the two phases —
when we have reached our lower bound — 0liveWaterblossom can work her magic.

Appendix B Recursion 223

Algorithm: wind-and-unwind-the-clock’s~hands hours hours
Given: hours, the number of hours to spin the clock’s hands forward

1 If hours > 0:
a Spin the hour and minute hands forward one hour
b wind-and-unwind-the-clock’s-hands hours-1
c Spin the hour and minute hands backward one hour

2 Else:
a OliveWaterblossom appears
b OliveWaterblossom works her magic

Understanding how this works can be difficult the first time you see it. One way to under-
stand it is to see that Step Ic does the exact opposite of Step 1a. That is, during the winding
phase, Step 1a spins the clock’s hands forward one hour; then Step 1b sends the recursive mes-
sage, preventing flow from reaching Step 1c (for the time being). When the lower bound
is reached, the if statement’s condition is false, so 0liveWaterblossom works her
magic. And since no recursive message is sent, the repetition halts. The recursion then
starts to unwind, with flow returning to Step lc in each message, which “undoes” the
effects of Step la. Figure B-6 gives a numbered visualization of what happens when
hours has the value 8. The steps that are performed within each message at a given point

are highlighted.

e i i

224 Section B.2 General Recursion

playScene3Shot1(): playScene3Shot1(): ‘
-windAndUnwind(8): -windAndUnwind(8): :
v 0 %
windAndUnwind(8): windAndUnwind(8):
-Spin hands forward 1 hour -Spin hands forward 1 hour
-windAndUnwind(7): —_| 1 -windAndUnwind(7): 17
-Spin hands backward 1 hour T -Spin hands backward 1 hour 4
\y winding
windAndUnwind(7): phase windAndUnwind(7): \
-Spin hands forward I hour -Spin hands forward 1 hour
-windAndUnwind(6): —_ | 2 -windAndUnwind(6): 16
-Spin hands backward 1 hour -Spin hands backward | hour—
windAndUnwind(6): windAndUnwind(6):
-Spin hands forward I hour “Spin hands forward I hour
-windAndUnwind(5): ——_| 3 -windAndUnwind(5): 4
-Spin hands backward 1 hour x -Spin hands backward 1 hour - 15
windAndUnwind(S): windAndUnwind(5): :
-Spin hands forward T hour -Spin hands forward 1 hour
-windAndUnwind(4): 4 -windAndUnwind(4): 14
-Spin hands backward 1 hour & _{-Spin hands backward 1 hour—
windAndUnwind(4): windAndUnwind(4): \
-Spin hands forward I hour -Spin hands forward 1 hour
-windAndUnwind(3): 5 -windAndUnwind(3): 13
-Spin hands backward 1 hour \ -Spin hands backward 1 hour |
=
windAndUnwind(3): windAndUnwind(3):
-Spin hands forward 1 hour -Spin hands forward 1 hour
-windAndUnwind(2): ——_| 6 -windAndUnwind(2): 12
-Spin hands backward 1 hour \ -Spin hands backward | hour -
»
windAndUnwind(2): windAndUnwind(2):
-Spin hands forward [hour -Spin hands forward 1 hour
-windAndUnwind(1): -windAndUnwind(1): 11
-Spin hands backwardm 7 -Spin hands backward I hour—
windAndUnwind(1): windAndUnwind(1): i unwinding
~Spin hands forward 1 hour -Spin hands forward 1 hour phase
-windAndUnwind(0): ——| 8 ~-windAndUnwind(0): 10
-Spin hands backward 1 hour \ -Spin hands backward 1 hour
A\
lower bound [WindAndUnwind(0): |
-Fairy appears /9
reached -Fairy works her magic
FIGURE B-6 Recursive winding and unwinding
We can define this method in Alice, as shown in Figure B-7.

Appendix B Recursion 225

(@ mantleClock.windAndUnwind

i

style = BEGIN_AND_END_ABRUPTLY -

BdoTogether{ -+

style = BEGIN_AND_END ABRUPTLY - | mol

4
3

 OliveWaterbl = 1.set{ opacity, 1(100%)~|); more...~

OllveWaterblossom ~ |.say(Time, run backwards! -~ |); duration =2 seconds - | fontSize = 30 imore...~

FIGURE B-7 The windandunwind () method

Given such a method, playScene3shotl() is quite simple, as shown in Figure B-8.

it AR

@ world.playScene3Shot1
public void playScene3Shott () { ‘

‘ mantleClock.windAndUnwind { hours =8 =)

f# Now do the rest of Shot 1 of Scene 3 - |

FIGURE B-8 The windandunwind () method

When performed, the method starts out with the scene shown in Figure B-1. Once
again, we see “time fly” as the hands wind forward, but this time they advance eight
hours. Our fairy then appears and says her line, as shown in Figure B-9.

276 Section 8.2 General Recursion

FIGURE B-9 Time has flown forward eight hours

The hands then spin backward, returning to their original positions, as shown in
Figure B-10.

FIGURE B-10 Time has flown backward eight hours

Appendix B Recursion 227

It is thus possible to do work during both the winding and the unwinding phases of a
chain of recursive messages. Any statements that we want to be performed during the wind-
ing phase must be positioned before the recursive call, and any statements that we want to be
performed during the unwinding phase must be positioned after the recursive call.

The following pattern can be used to design many recursive methods:

Simplified Pattern for Recursion:

void recursiveMethod (' Number count) {
"if (count > LOWER BOUND) {
windingPhaseBehavior();
recursiveMethod(count-1);
unwindingPhaseBehavior();
} else {
betweenPhasesBehavior();
}
}

B.3 Recursion and Design

Now that we have seen-some examples of recursive methods, how does one go about
designing such methods?

Recall that recursive methods usually have a Number parameter. Designing a recursive
method generally involves two steps: (1) identifying the trivial case — how to solve the problem
when the value of this parameter makes the problem trivial to solve; and (2) identifying the
nontrivial case — how to use recursion to solve the problem for all of the other cases. Once we
have done so, we can plug these cases into this template:

someType recursiveMethod(Number count) {
if (count indicates that this is a nontrivial case) {
solve the problem recursively, reducing count
} else {- // it's the trivial case
solve the trivial version of the problem

}

To illustrate, let’s apply this approach to one of the functions mathematicians
defined recursively long before there were computers.

Pretend for a moment that you are an elementary school student, and your teacher
just caught you misbehaving during math class. As a “punishment,” your teacher makes
you stay in at each recess until you have calculated 10! (10 factorial), 20! (20 factorial),
and 30! (30 factorial). Even with a calculator, this will take a long time because the facto-
rial function #! is defined as shown in Figure B-11.

228 Section 8.3 Recursion and Design B

Ix2x..x(n=-1)xn "

FIGURE B-1T n/, in open-form notation

That is, 1! == 1; 2! == 2; 3! == 6, 4! == 24, 5! == 120, and so on. 0! is also defined
to equal 1, and the functlon is not defined for negative values of .

While we could solve this problem by hand, doing so would be long and tedious, and
we would lose lots of recess time. Instead, let’s write an Alice program to solve it!

To do so, we can begin as we did in Section 3.5.2, and build a scene containing a
character (Roommate, in this case) who can do factorials “in her head,” positioned within f
an Alice School environment, as shown in Figure B-12. - -

FIGURE B-12 Sefting the scene to compute n/

With such a scene in place, we just have to (1) write a factorial () function, (2) get n
from the user, (3) invoke and save the answer of factorial (n), and {4) display the answer. "‘i

Let's begin by writing the factorial() function. If we examine the description
given in Figure B-11, it should be evident that this is a counting problem, and so we
could solve it using a for loop. However, let’s instead see how the mathematicians would
have solved it back in the days before there were for loops.

dix B Recursion 229

B.3.1 The Trivial Case

We start by identitying the trivial case. What is a version of the problem that is trivial to
solve? Since 0! == 1 and 1! == 1, we actually have two trivial cases: when n == 0, and
when n == 1. In either case, our function needs to return the value 1.

B.3.2 The Nontrivial Cases

To solve the nontrivial cases, we look for a way to solve the general n! problem, assuming that
we can solve a smaller but similar problem (for example, (r-1)!). If we compare the two:

nl=1x2x..x(n=1)xn

(=1 =1x2x%x..x(n-1)

it should be evident that we can rewrite the equation in Figure B-11 by performing a sub-
stitution, as shown in Figure B-13.

nt=(n-1)!'xn

; o
Frorm nofation

B.3.3 Solving the Problem

The trivial and nontrivial cases can be combined into a complete solution to the problem,
as shown in Figure B-14.

(n—=1)!'xn,ifn>1
nl = l,ifn=00Rn==
undefined, otherwise

cursive alcorithm for nf

The equation given in Figure B-14 can serve as an algorithm for us to define our
factorial() function in Alice, as shown in Figure B-15.

7 Roommate.factorial

e !

public Number factorial (Number :fz}n) {

Number {3 result= 0~ *;

iR > -

; resuit = _set(value,

yelsed

B
' resutt - .set(value, 'V1f s
Telse{ o

: result - |.set{ value, 4-0)

“return result

FIGURE B-15 The factorial() function in Alice

Note that because 7/ is undefined when n is negative, and n! never returns -1 under
normal circumstances, we have our function return -1 when n is negative.

With this function defined, we can now finish our program, as shown in Figure B-16.

ﬁ world.my first method [2
public void my_first_method (} {

Number ;i n= 1= |; Number iz answer = 1

E doinQrder {
- Roommate ~ 5.say(lcan cgmpqtg nlin my head! - y » qyraﬂqnéz seconds ~ ifon(S[ze =30~ more...~

Roommat

1.say(Enter avalue for n: < |); duration =2 seconds - fontSize =30 - {more...-

“n .f.set(value, NumberDialog(qL}ést‘ioh='Ef)tér-;l_\ly'mberr:_ jz)‘mro'ieh

answer - | set{ value, ‘Roommate.factorial{ n=n<)i=) more..-

i Roommate * .say(":',-tﬁs_t'|"90} s e + i answer - toString() - -); duration =2 seconds ~ fontSize =30 - \more... -

FIGURE B-16 The factorial() program in Alice

When run, the program has us enter a value for n, and then displays n. After test-
ing our function on easily verified values (such as 0, 1, 2, 3, 4, and 5), we can solve the
problems our teacher assigned. Figure B-17 shows the result when we use the program
to compute 10!,

Appendix B. Recursion 231

B.4

{ 10.01 s 3628800.0

FIGURE B-17 The factorial() program in Alice

It's recess time!

A Final Recursive Method

As a final example, consider the following user story.

Scene 1, Shot 1: zeus, socrates, aliceliddell, plato, euripides, and the whiteRabbit
are all waiting to practice basketball. The coach says, “Okay, everyone line up by height!”

The players line up, tallest to shortest.

Scene 1, Shot 2: The coach says, “No, line up the other way — shortest to tallest!” The

players reverse their order.

Scene 1, Shot 1 is mainly to get things set up, so we will leave it as an exercise. What
we want to do is is to build Scene 1, Shot 2, especially the part in which the players reverse

their order.

(e

932 Section B.4 A Final Recursive Method

It is fairly easy to get our scene to the point shown in Figure B-18.

No, line up the other way — shortest i
to tallest! [

FIGURE B-18 Scene 1, Shot 2 (beginning) !

But how can we make our players reverse their order?

Since we have a group of players, and their number is fixed, one idea is to store
them in an array, tallest to smallest, as shown in Figure B-19.

T@ world.my first method
public void my_first_method () {

Object]] EE] anArrayl=[zeus; socrates, plato, euripides, aliceLiddell, whlteRabbitl ;

{iworld.playScene1Shotz ();

FIGURE B-19 Scene 1, Shot 2 (beginning)

The first array element is the tallest player, the second array element is the second
tallest player, and so on. We can visualize anArray as shown in Figure B-20.

Appendix B Recursion 233

[01 (1] (21 (31 [4] (5]
s D2 P N BN

o

zeus socrates plato euripides aliceliddell whiteRabbit

FIGURE B-20 Visuo|izing anArray

With the players in order within the data structure, we can transform our problem
into this one:

- Reverse the positions of the players in anArray.

One way to accomplish this is to (1) make the first and last players in the array swap
positions within our world, as shown in Figure B-21, and then (2) reverse the remaining
players in the array (that is, ignoring the whiteRabbit and zeus) the same way — a
recursive solution!

[0} [1] [2] [3] [4] [5]

anArray

whiteRabbit socrates plato euripides dliceliddell ~ zeus

FIGURE B-21 The fallest and smallest players swap positions

To do so, we would need a method named reverse(), to which we can pass the
array containing our players, plus the indices of the players that are to swap positions:

reverse(anArray, 0, 5);

Our method requires three parameters: an object array, a Number to store the first
index, and a Number to store the second index:

void reverse(Object [] arr, Number indexl, Number index2) {

}

To get two objects to swap positions, we can write a method named swapPositions (),
and then pass it the two objects whose positions we want to swap. Figure B-22 shows one

lllllllll-..Ill.lllIlIlIllllllllllllllllIIIIIIIIIIlIlIlIllIIlllllIllIlIlIIIIllIIIIIIIIII...'-IIIIIIIIII

234 Section 8.4 A Final Recursive Method .

way to do this, which is by adding two dummies to our world and then using them within our
method to mark the original positions of the two objects we wish to move.

@ world.swapPositions |

public void swapPositions (Object ;[o objt , Object o] 9512:){

); more...-

=i, treter - :); more...~

doTogether{
|.setPointOfView(Dummy2 -

FIGURE B-22 Exchanging two objects’ positions

In this definition, the two objects move simultaneously, one moving in front of the
line of players, and the other moving behind the line of players, to avoid colliding with
one another.

With method swapPositions() in hand, we are ready to define the recursive
reverse () method.

B.4.1 The Trivial Case

As we have seen, the first step in defining a recursive method is to find a case where the
problem is trivial to solve. Since our reverse () method has this form:

void reverse(Object [] arr, Number indexl, Number index2) { !

}

any trivial cases must be identified using the Number parameters, index1 and index2.
At this point, it is helpful to generalize from the specific problem at hand to the

more general problem of reversing the positions of objects stored in an arbitrary array

arr, where index1 contains the index of the array’s first element, and index2 contains

Appendix B Recursion 235

the index of the array’s last element. Thinking this way, there are two cases in which the
problem of reversing the positions of the items in arr is trivial to solve:

L. If there is just one object in arr, then the object is already in its final position, so we
should do nothing. There is one object in the array when index1 == index2.

[\

If there are zero objects in arr, then there are no objects to move, so we should do
nothing. There are zero items in the array when indexl > index2.

Since we do the same thing (nothing) in each of our trivial cases, the condition
indexl >= index2 will identify both of our trivial cases. Conversely, the condition
indexl < index2 can be used to identify our nontrivial cases.

B.4.2 The Nontrivial Cases

We have hinted at how the nontrivial cases can be solved. Since index1 is the index of
the first (tallest) object in the array, and index2 is the index of the smallest object in the
array, we:

1. Swap the positions of the objects in arr[index1] and arr[index2].
2. Reverse the rest of the objects (ignoring the ones we just swapped) recursively.

The trick is to figure out how to do Step 2. Drawing a diagram is often helpful, as
shown in Figure B-23:

[0] [1] [2] [31 [4] [5] indexl index2

Lo] [=]

whifeRabbit socrates plato euripides aliceliddell = zeus

anArray

FIGURE B-23 Visudlizing the recursive step

This allows us to clearly see the sub-array of objects that Step 2 must reverse; it
begins at index 1 and ends at 4. However, to correctly solve the problem, we must express
the arguments in Step 2 in terms of changes to our method’s parameters, index1 and
index2. Expressed this way, the sub-array to be processed by Step 2 begins at index
index1+1, and ends at index2-1. That is, we can solve the nontrivial cases of the prob-
lem as follows:

. Swap the positions of the objects in arr{index1] and arr[index2].
2. Recursively invoke reverse(arr, indexi+l, index2-1).

That’s it! Figure B-24 presents a definition of reverse () that uses this approach.

9236 Section 8.4 A Final Recursive Method

e A At o i L S S DA

@ world.reve

. :
orld.reverse (arr=arr = | Index1

}else{
(Do Nothing

FIGURE B-24 The recursive reverse () method

Note that our reverse() method does not change the order of the objects within
the array. It merely uses the array as a table from which it can identify the tallest and
shortest players, the next tallest and next shortest players, and so on.

Given this definition, we can finish playScene2shot2 (), as shown in Figure B-25.

|); duration =3 seconds < [fontSize =30 ~ ‘\ more...~

FIGURE B-25 The recursive reverse() method

Figure B-26 presents some screen captures taken as playScenelShot2 () runs. Com-
pare them to the initial setting shown in Figure B-18 to see the progression of changes.

Appendix 8 Recursion 237

FIGURE B-26 Screen captures of Scene 1, Shot 2

Figure B-27 provides a conceptual view of what happens as reverse() runs.

‘]‘1 reverse(anArray, O, S)i

r“‘“’“—“‘tz reverse(arr, 1, 4)}
| F—B reverse(arr, 2, 3)*——% ,L

y
zeus socrates plato |4 reverse(arr, 3, 2)| euripides aliceliddell whiteRabbit
A A A

3

FIGURE B-27 Conceptudlizing reverse()

The fourth message, reverse(arr, 3, 2), invokes the trivial case, halting the
recursion.

Recursion is a powerful programming technique that can be used to solve any problem
that can be decomposed into one or more “smaller” problems that are solved in the same way.

Symbols

++ (increment) operator 124
== (equality) operator 115

Numerics

3D objects
orientation 59-62
position 57-59

3D text 193-199

A

ADD OBIJECTS button 12
Alice
downloading 3
installation 3
Statements 18
Alice Gallery 12
animal parameter 83
arguments
recursion 220
arrays 144, 157
indexed variables 161
integers, generating 167
marching ants example 157~161
random access example 163-167
read version 162
subscript operations 162
write version 162
arrow keys, keyboard events and 191
asSeenBy attribute 127, 139
attributes 91
asSeenBy 127, 139
duration 127
methods 18
objects, retrieiving 95-98
axis 58

background 196-198
bees example 145-150
Boolean functions 109-110
Boolean operators 111-112, 139
Boolean type 108
Boolean variables 110
borders
green 15
red 15
bounding boxes 14
functions 26
buttons
ADD OBJECTS 12
capture pose 89
create new event 180
create new function 99
create new method 32
create new variable 110, 146
drop dummy at camera 51
Play 10
Redo 10
Undo 10,22
buying tickets example 154156

C

camera object 10
dummies and 50
editing area and 16
setPointOfView() message and 54-57
capture pose button 89
classes, objects and 13
clipboard 45-46
editing area and 45
statements and 46
code, reusing 45-49
comments, methods 40
computeHypotenuse() method 75
concatenating strings 79

239

240 Index

conditions in if statements 115-117
control structures 108
controls

doInOrder 15

doTogether 19

editing area 11
counting loop, for statement 123125
create new event button 180
create new function button 99
create new method button 32
create new variable button 110, 146

D

data structures 144
debugging 16-17
declaring variables 78
defining variables 67
depth, objects 24
design

recursion and 229-233
details area 25-27

functions tab 96

methods pane {5

panes 11

subparts 14
distancelnFrontOf() function 71
distanceTo() function 71
doInOrder control 15
doTogether control 19
downloading Alice 3
dragging methods 15
dragon flapping wings example 38-42
drop dummy at camera button 51
dummies 50-54
dummy objects 52
duration attribute 127

Edit menu [0
editing area 11
camera and 16
clipboard and 45
controls 11
equality (==) operator 115
errors, logic errors 182
event handling 184, 184-185
events 178
creating 180
handlers, defining 183
keyboard 185, 186—193
logic errors 182
mouse clicks 179-185
program events 185

events area 11
examples
bees 145-150
buying tickets 154-156
dragon flapping wings 38-42
jumping fish 85-88
Old MacDonald’s farm 81-85
storing computed values 67-75
storing user-entered values 75-80
toy soldier marching 42-44
expressions menu 72

F

Fibonacci series 135
fibonacci() function 136-139
File menu 10
fixed-sized data structure (see arrays)
flapWings() message 38
flow 5
flow control
for statement 121-125
functions and 134-139
pausing 118
selective 112-114
statements 108
while statement 127-134
flow diagram 108
for statement 108, 121-123, 139
counting loop 123-125
nested 126
while statements and 131
fullName variable 97
functions 26
attributes, retrieving 95-98
Boolean 109-110
distancelnFrontOf() 71
distanceTo() 71
fibonacci() 136-139
flow control and 134-139
lastindexOf() 154
lists 153-154
Math.sqrt() 78
NumberDialog() 77
parameters and 99-102
partNamed() 167-174
size() 154
standard 213-215
wait() 139
world 215-218
functions pane 11, 25-27
functions tab 14
details area 96

G

general recursion 224-229
green borders 15
ground object 10

H

heBuilder 25
height, objects 24
Help menu 10

if statement 108, 114115
conditions 115-117

if statements 139

increment (++) operator 124

indexed variables, arrays 161

indexOf{() function 154

infinte recursion 219

installing Alice 3

integers, generating 167

isShowing property 22

iteration 150

J

Jjumping fish example 85-88

K

keyboard events 185, 186-193

L

lastindexOf() function 154
light object 10
list menu 148
lists 144
bees example 145-150
buying tickets example 154-156
defining 169
entries 148
functions 153-154
iterations 150
methods 152
operations 150-154
variables, defining 146
local variables 67
logic errors 182
loops
for statement 123-125

Index

iterations 150
nested 125-127

M

make a List checkbox 146
marchRight() method 43
Math.sqrt() function 78
menus

Edit 10

expressions 72

File 10

Help 10

Tools 10
messages 14, 2]

attributes 18

flapWings() 38

move() 43

resize() 24

roll() 40

say() 17

sending 15-16

set() 23

statements and 32

turn() 43
method variables 67, 67-80
methods 15, 211-213

comments 40

computeHypotenuse() 75

defining 169

dragging 15

lists 152

marchRight() 43

move() 59

names 33

object methods 38-44

pane 25

pointAt() 15

scenes 32-36

shots 36-38

singVerse() 82
methods pane 11, 15, 24
methods tab 14
mnemonic values, keyboard events and 186
more... 18
mouse clicks 179-185
move() message 43
move() method 59

N

naming
methods 33
objects 13

nested for statements 126
nested loops 125-127

241

247 Index

noise parameter 83

nontrivial case, recursion 229, 231, 237
nouns 5, 21

NumberDialog() function 77

o

object methods 38-44
object tree 10
properties 21
object variables 67, 89
objects 21
adding 12-14
attributes 91
retrieving 95-98
bounding box, functions 26
bounding boxes 14
classes and 13
color 91
depth 24
dummy 52
height 24
naming 13
opacity 91
orientation 59-62
position
3D 57-59
quad view 27-28

renaming 13

subparts 1415

vehicle 91

width 24
0Old MacDonald’s farm example 81-85
operators

Boolean 111-112, 139

equality (==) 115

increment (++) 124

relational 110-111
orientation of objects, 3D 59-62

pitch 60

point of view 62

roll 61

yaw 60

P

panes
details area 11
functions 25-27
methods 24, 25
properties 21

parameters 67, 30-88
animal 83
functions 99-102
noise 83
values
validation 118~120
partNamed() function 167-174
pausing program flow 118
pitch, orientation 60
Play button 10
point of view, orientation 62
pointAt() method 15
positioning objects
3D 57-59
axis 58
print() statement 34
pristine 9
program design. 4-5
program events 185
program style 11-12
properties o
modifying from within program 22
vehicle 92-95
properties pane 11,21
properties tab 14
property variables 67, 89-92

Q

quad view 27-28

read version, arrays 162
recursion
arguments
numeric 220
design and 229-233
general 224-229
infinite recursion 219
introduction 219
nontrivial 237
nontrivial case 229,231
tail recursion 220, 221-224
trivial case 229, 231, 236
unwinding phase 220
winding phase 220
red borders 15
Redo button 10 i
relational operators 110111
renaming objects 13

rep
res
retl
reu

rol
rol

say
sce

scr
sel
sel
set
set

shu
shi
sir
siz
1)
SO
)
sp
ste
ste
ste

st
st
st
st
st
SL

Sl

Index 243

repetition, for statement and 121-123
resize() message 24
return statements 97
reusing code 45-49
objects in different worlds 46
roll() message 40
roll, orientation 61

S

say() message 17
scenes
methods 32-36
transitions 200-207
barndoor wipe effect 203
box iris effect 205
edge wipe effect 203
fade effect 201
reusing transitions 206
special effects 200
scrolling through statements 36
selective flow control 112-114
sending messages 15-16
set() message 23
setPointOfView() message
camera control and 54-57
dummies and 50
sheBuilder 25
shots, methods for 36-38
singVerse() method 82
size() function 154
software design 21
software engineering 21
software implementation and testing 21
spirals, Fibonacci series and 135
standard functions 213-215
state, storing 182
statements 18
clipboard and 46
flow control 108
for 108, 121-123, 139
nested 126
if 108, 114115, 139
conditions 115-117

messages and 32

print() 34

return 97

scrolling through 36

wait() 117

while 108, 127-134, 139
storing computed values 67-75
storing user-entered values 75-80
storyboard sketches 6-8, 21
string operations 78
strings, concatenating 79
subparts, objects 14-15

details area 14
subscript operations, arrays 162

T

tail recursion 220, 221-224
targets, pointAt() method 16
templates 8
testing 16-17, 21
text
3D 193-199
hiding/unhiding 198-199
off-camera, repositioning 195
Tools menu 10
toy soldier marching example 42-44
transition diagrams 8
transitions between scenes 200-207
barndoor wipe effect 203
box iris effect 205
edge wipe effect 203
fade effect 201
reusing transitions 206
special effects 200
trivial case, recursion 229, 231, 236
turn() message 43
tutorials 3—4
types, Boolean 108

U

Undo button 10, 22
unwinding phase, recursion 220
user stories 5-6, 21

v

validation 118-120
values .
computed, storing 67-75
sequences 144
user-entered, storing 75-80
values, validation 118-120
variables
Boolean 110
data structures 144
declaring 78
defining 67
fullName 97
initial value 69
lists, defining 146
local variables 67
method variables 67, 67-80
object variables 67, 89
parameters 67
property variables 67, 89-92
vehicle property 92-95
verbs 5

244 Index

W wizards 89
world functions 215-218
write version, arrays 162

wait() function 139

wait() statement 117

welcome window 8

while statement 108, 127-134, 139
for statements and 131 Y

width, objects 24

winding phase, recursion 220 yaw, orientation 60

World Functions

continued

Random.nextDouble()]
-] strlngA

& asl; uéer-)

“ NumberDialog(question)|

; StringDialog(question:):

5 mouse
Mouse.getDIstanceFromLeftEdge();

= Othverry” o
 getVector(right!, .up), forward!)|

About the Author

: " COURSE TECHNOLOGY ISBN-13: 978-1-4188-3771-k

ISBN-1D: 1-4188-3771-7
E® (CENGAGE Learning’

90000 >
For your lifelong learning solutions, visit course.cengage.com |
Purchase any of our products at your local college store or at our-
71k

preferred online store www.ichapters.com

97781418"837

