Hackensack 1gh Scho0i
Mathematics Department

A DA MS

J O E L

c
o)
-
®
S
C
g
<
o
>
0
|
c
T

Computing

SRR ST 3 3

Object Methods

fon:, amount:);

,, amount:);

“amount);

 object think(what);

pfaySolmd(:sp_undj);

Objec : moveTo(éséeénéy')
of)jgct".‘mqs»/“eTow;@(target, amount);
obj?gtj.fﬁ&éAwaﬁrom(target., amount);
oéjéctj.bfightfo(7as§e‘enB_‘y);

i obj‘eét .gurnToFace(%;rggt')

I

object pointAt(target);

ébjg-gfi.sétPolhtdeiew(éséeenBy‘);

obj_é_vtrz_rt‘.se'tPosé(' pose);

o_bjgc fnéveAtSpe'ed(vdirection, speed);

urnAtSpeed(direction, speed };:

ob _ct}.rollAtSpeed(difection, speed };

objegt_f.constrainToPolntAt(target);

MATHEMATICS DEPARTMENT

Object Functions

{ object's.details: . =

create new function

= proximity)

i object..isCloseTo(threshold , object)
;i’ object .isFarFrom(thréshold, object)
6bjec; .distﬁnceTp(object)

- object .distanceToTheLeftOf{ object)
! object distanceToTheRightOf{ object)

i object‘.dlsfanceAborve(object)
; object distanceBelow(object)
’ﬂgf)jgct .distancgln?rontﬂf(object)
- object .distanceBehind(object)
=i size

f object‘.getWidtHOj

i objgc(.geti—(réi.grﬁt'b
 object’.getDepth)

objbe‘c»tb isSmallerThan(object)

- object sta}rgefThan(object)
querc't.‘.lsNarrqrwerThan(' object)
{ object IsWiderThan(object)

{ object isShorterThan(object)

“ object isTallerThan{ object)

=l spatial felat_io_n k

F ob_jeqt .i;‘ljoTheLeftOf(object)

- object IsToTheRightOf(object
{ object IsAbove(object)

';f objeg:_f .isBeiow(quect)

{ object .isinFrontof(object)

_ object isBehind(object)

= point qf view o

A object .getPointOfView(’

: object .getPosiﬁonO

% object .getQuaternion()’

=1 other

ébject’.getCuri'entPose()v

object partNamed(key)

on

?

in Act

(e

Computing Through

Animation
Joe! Adams

A

Contents

Chapter 1
11

1.2
1.3

1.6
1.7

Getfing Started with Alice 1

Getting and Running Niice 2

1.1.1 Downloading Alice
11.2 Installing Alice 2
1.1.3 Running Alice 2

Tha Mice Tutorials 2

Program Design 4
1.3.1 User Stories 4

2

1.3.2 Storyboard-Sketches

1.3.3 Tansition Diagrems

5
7

Program Implementation in Alice 7
141 Progrom Style 10
142 Adding Objects to Alice

143 Accessing Object Subparfs

1.4.4 Sending Messages

14

1.45 Testing and Debugging
1.4.6 Coding the Other Actions

147 Siatements 17
1.48 The Final Action
1.49 Final Testing 19

18

1
13

15
16

1.410 The Software Engineering Process

Alice’s Details Arec 20

1.5.1 The properties Pane

1.5.2 The methods Pane
1.5.3 The functions Pane

Chopter Summary 28
171 KeyTems 28

Programming Projects

21
23
25

Alice Tip: Positioning Objects Using Quad View 26

28

Vi (onlenis

Chapter 2 Methods 31

2.1

22

2.3

24

2.5

2.6

World Methods for Scenes and Shots 32
2.1.1 Methods For Scenes 32
212 Methods For Shots 36

Object Methods for Object Behaviors 38 .
221 Example 1: Telling a Dragon to Flop Its Wings ~ 38
2.2.2 Example 2: Telling a Toy Soldier to March- 42

Alice Tip: Reusing Your Work 45)

2.3.1 Using the Clipboard 45

2.3.2 Reusing an Object in o Different World 46 -

Alice Tip: Using Dummies 50

241 Dummigs 50

24.2 Using setPointofview() fo (onirol the Comera 54

Thinking in 30 57

251 An Object’s Position 57
252 An Object’s Orientafion 59
253 Pointof View 62

Chopter Summary 62
261 KeyTerms 63
Programming Projects 63

Chapter 3 Variables and Functions 65

3.1

32

33
34
35

3.6

Method Variables 46

3.1.1 Example 1: Storing a Computed Value 66
3.1.2 Exomple 2: Storing o UserEntered Value 74
Porometers 80

3.2.1 Examgple 1: Old MacDonald Hod a Farm 81
3.2.2 Example 2: Jumping Fisht 84

Property Variobles 88
Alice Tip: Using the Vehicle Property 91

Functions 94
3.5.1 Example: Refrieving an Attribute from an Object 94
35.2 Functions with Parameters 98

Chapter Summary 101
361 KeyTeims 101
Progromming Projects 102

Chapter
4]

4.2

43

44

45

4.6

Chapter
51

5.2

53
54

(ontents vl

41

4.2

43

45

4.6

5.1

52

54

Chapter 4 Flow Control 105

The Boolean Type 106

411 Boolean Fundions
412 Boolean Varicbles

413 Relational Operators

414 Boolean Operators

The 1. £ Statement 110

421 Introducing Selective Flow Control 110
422 ig Statement Mechanics
423 Building i £ Statement Condifions 113
424 Thewait () Stofement
425 Vlidating Parameter Volues 116

The £ox Statement 119

431 Introducing Repetiion 119
432 Mechanics of the £ox Stafement 121
433 Nested Loops 123

Thé while Statement 125
441 Infroducing the whi le Statement 125
442 while Statement Mechanics
443 Compaing the £ox ond whi le Stofements 129.
444 ASecond Example - 130

Flow-Control in Functions -~ 132

45.1 Spirals ond the Fibonacdi Function 132

452 The Fibonacci Function

(hapter Summery 137
461 KeyTerms 138

Programming Projects

Chapter 5 Lists and Arrays 141

The List Structure 143

51.1 List Example 1: Flight of the Bumble Bees 143
512 ListOperations 148
513 List Example 2: Buying Tickefs 152

The Aray Structure 155

521 Aay Example 1: The Ants Go Marching 155

522 huay Operofions

523 Aoy Example 2: Rondom Access 161
Nlice Tip: Using the paxrtNamed () Function 165

Chapter Summary 172
541 KeyTerms 172

Programming Projects

viii

(ontents

Chapter 6 Events 175

6.1 Handling Mouse Clicks: The Magical Doors 177
6.1.1 The Right Door 178
6.1.2 The Left Door 179
6.1.3 The Right Door Revisited 180
614 Event Hondling Is Simultaneous 182
6.1.5 (Categorizing Events 183

6.2 Handling Key Presses: A Helicopter Flight Simulator 183
6.2.1 The Problem 184
6.2.2 Design 184
6.2.3 Programming in Mlice 184

6.3 Alice Tip: Using 30 Text 192
6.3.1 Repositioning Text that Is Off-Camera 194
6.3.2 Adding 0 Background 194
6.3.3 Making Text Appear or Disappear 196

6.4 AMice Tip: Scene Transitional Effects for the Comera 198
6.4.1 Setup for Special Fffects 199
6.4.2 The Fode Fffect 200
6.4.3 The Bamdoor Edge Wipe Effect 202
6.44 The Box lris Wipe Effect 203
6.4.5 Reusing Tronsition Effects 205
6.5 Chapter Summary 206
651 KeyTerms 206
Programming Projects 206

Appendix A Alice Standard Methods and Functions 209
A1 Alice Standord Methods 209
A2 Mice Stondard Object Functions 211
A3 Aice World Functions 213

Appendix B Recursion 217

B1 Toil Recursion 219

B2 General Recursion 222

B.3 Recursion and Design 227
B.3.1 The Trivial Case 229
B.3.2 The Nontriviol Coses 229
B.3.3 Solving the Problem 229

B4 AFinal Recursive Method 231

B4 The Trivial Case 234
B.4.2 The Nontriviol Coses 235

Index 239

Preface

1 wrote this book to remedy some of the problems in today’s introductory computer pro-
gramming (CS1) courses. To put it politely, most CS1 books are less than engaging, and
simply fail to capture the imaginations of most of today’s students. No matter how often I
say it, many of my students never bother to “read the book.” Now, these students aren’t
blameless, but it isn’t entirely their fault. Many CS1 books present computer program-
ming in a dry, abstract, mind-numbing way that’s great if you 're trying to fall asleep, but
not so good if you want to learn.: ,

This is a tragedy, because writing software is ‘one of the best opportumtles to exer-
cise creativity in today’s world. Traditional engineers and scientists are limited in what
they can do by the physical laws that govern our world. But if a software engineer can
imagine something, he or she can usually make it happen in the virtual world of the com-
puter. In its 2006 “Best Jobs in America” study, Money Magazine listed software engineer
#1 on its list of best jobs, because of its creativity, pay, and prestige. According to the U.S.
Bureau of Labor Statistics, software engineering is also expected to be one of the fastest-
growing job markets in the next decade. :

This growing demand for software engineers poses a problem, because ever since the
dot-com bust in 2001-2, fewer and fewer students have been enrolling in CS1 courses. Of
those who do enroll, many drop out, at least in part because the subject matter fails to
engage them. CS1 courses are the starting point for software engineers; every student who
drops out of CS1 is one less prospective software engineer. Those of us who are CS1
instructors need to do everything we can to- (1) attract students to CS1, and (2) retain as
many of those students- as possible. I wrote this book to try to help attract students to and
retain students in CS1.

The Advantages of Alice

At the 2003 ACM SIGCSE conference, I saw Carnegie Mellon’s Randy Pausch demon-

strate 3D animation software he called Alice. Using Alice, he built a sophisticated 3D

animation (like Shrek or Toy Story, but much simpler) in just a few minutes. To do so,
he used the traditional computer programming tools: variables, if statements, loops,

subprograms, and so on. But his Alice software offered some starthng advantages over

traditional programming, including the following: :

® The allure of 3D graphics. It is difficult to overstate the visual appeal' of 3D animations,
especially to today’s visually-oriented students. When your program works, you feel

X Preface

euphoric! But even when you make a mistake (a logic error), the results are often comical,] \
producing laughter instead of frustration.

o The Alice IDE. Alice includes a drag-and-drop integrated development environment
(IDE) that eliminates syntax errors. This IDE eliminates all of the missing semico-
lons, curly braces, quotation marks, misspelled keywords or identifiers, and other » ¢
syntax problems that bedevil CS1 students.

o Object-bused programming. Alice includes a huge library of off-the-shelf 3D objects —
ranging from astronauts to ants, cowboys to castles, fairies to farms, mummies to
motorboats, ponds to pagodas, robots to rowboats, skyscrapers to space shuttles, tur- '
tles to T-rexes, wizards to waterfalls, and zombies to Zambonis — each of which can !
be animated through a variety of predefined methods. Alice makes it easy to build 3D
worlds from these objects. Those objects can then be animated using object-based
programming.

By using 3D animation to motivate students, eliminating syntax errors, and turning
logic errors into comedy, Alice transforms the CS1 experience from frustration to joy. In
short, Alice makes it fun to learn object-based programming!

As I watched Professor Pausch’s demonstration, it became apparent to me that Alice :
could solve many of the problems afflicting CS1 courses. If instructors would use Alice
to initially introduce each programming topic, Alice’s engaging environment would help
motivate students to master that topic. Then, with that mastery to build upon, the
instructor could review that topic in a traditional programming language like Java or

C++, reinforcing its importance.

Imaginary Worlds

In the summer of 2003, I decided to put some of these ideas to the test, by offering a
summer “computer camp” in which we would use Alice to teach some middle school stu-
dents how to program. Our pilot group of 6th, 7th, and 8th graders learned object-based
programming, and had a lot of fun doing so!

Our 2003 results were very encouraging, so in the summer of 2004, we began offer-
ing The Imaginary Worlds Camps, with 28 middle school boys and 25 middle school girls
signing up. The results were amazing. Alice captured their imaginations and wouldn't let
them go. Some students wanted to stay at the end of the day to keep working on their
programs — we had to force them to leave! Others wanted to skip the snack break. (My
college students have never passed up food to keep working on a project.) At the end of
the camp, the feedback was loud and uniformly positive: these students had loved learn-
ing how to program with Alice.

The Imaginary Worlds Camps gave me the chance to experiment with Alice, trying
out different examples, and honing them to teach a concept in the simplest way possible.
Many of those examples have made their way into this book, and I owe a debt of grati-
tude to all of the young boys and girls whose creativity, energy, and enthusiasm made

these camps so much fun.

Despite what [said at the beginning of this Preface, many instructors are content with
the textbooks they use in their CS1 courses. In order for such instructors to use Alice,
someone needed to write a concise Alice book to supplement their CS1 texts. I decided to
write a "short and sweet” book, that would present just what you need to know to use
Alice well, and skip over its more specialized features.

[spent the Fall 2004 semester on sabbatical at Carnegie Mellon. Each week, I spent
three days writing parts of this book and three days working as a member of the Alice team,
helping them find errors in Alice. Working with these people was invaluable, as they helped
me better understand Alice’s strengths and weaknesses. This in turn helped me decide
which Alice features to include in the book, and which features to exclude.

fagogical Featyres

To help students master the concepts of object-based programming, this book uses a

number of pedagogical features, including the following:

> Movie Metaphors. Movies are pervasive in our culture. Since Alice programs are similar
to movies, this book uses the language of movies to introduce software design. Using
this approach, the book builds a conceptual bridge from a student’s existing knowledge
of movies to the new ideas of software design.

Detailed Diagrams. This book contains approximately 75 color screen captures. Many
of these demonstrate the exact drag-and-drop steps needed to use Alice effectively.

Engaging Examples. Using Alice’s rich library of 3D objects, this book includes exam-
ples that keep students captivated, such as:

a dragon flapping its wings

a scarecrow singing “Old MacDonald Had a Farm”
a fish jumping out of the water

three trolls facing off against a wizard

a girl walking in a spiral to follow a treasure map
and many more!

Integrated Software Design. Beginning in Chapter 1 and continuing throughout, this
book emphasizes software design. Each chapter shows how that chapter’s concepts
fit into the overall software design methodology. Students following this methodology
can never say, “I don’t know where to start.”

Alice Tips. Most chapters include one or more special “Alice Tip” sections that cover
critical details students need to know to use Alice effectively.

Chapter Summaries. The final section of each chapter includes a bulleted list of the
key concepts covered in that chapter, plus a separate list of that chapter’s key
vocabulary terms.

Programming Projects. Each chapter concludes with 10-12 programming projects, of
varying levels of difficulty.

i Prefuce

Using This Book

This book is intended as a supplement for CS1 courses, but it can be used in any course
where an instructor wishes to teach the ideas of object-based programming. The book
covers these ideas in six chapters, arranged as follows:

1. Getting started: using objects and methods

2. Building methods: using abstraction to hide details

3. Variables, parameters, and functions: computing and storing data for later use
4. Control structures: controlling flow via if, while, and for statements

5. Data structures: using and processing arrays and lists

6. Events: handling mouse and keyboard input
These six chapters can be used in a variety of ways, including:

® The Spiral Approach: Spend 4-6 weeks introducing all of the programming concepts using
Alice (the first spiral). Then spend the remainder of the semester revisiting those same con-
cepts in Java or a different language (the second spiral). In this approach, the programming
concepts are covered in two distinct “batches”: an Alice batch, followed by a Java batch.

® The Interleaved Approach: For each concept (for example, parameters), introduce that
concept using Alice. After the students have had hands-on experience with that con-
cept in Alice, immediately revisit that same concept in Java or a different language. In
this approach, the programming concepts are covered sequentially, with the Alice and
Java coverage interleaved.

If an instructor does not normally cover event-driven programming, Chapter 6 may be
omitted, or deferred until the end of the course. However, most students find this mate-
rial to be very engaging, because it allows them to start building games! If an instructor
wishes to do so, events may be introduced at any point after Chapter 3.

As students work through the examples in this book, they should make sure to save their
Alice worlds regularly. We will begin some worlds in one chapter and add to those same
worlds in a later chapter, so students should save at the end of each example. Each world
should be saved with a unique, descriptive name, so that it can be easily identified later.

i

The appendices provide resources and material supplementing what is covered in the
chapters. Appendix A presents an exhaustive list of Alice’s standard methods and func-
tions. including detailed behavioral descriptions. Appendix B provides a "mini-chapter”
on recursion, with examples that help students visualize recursion.

The inside covers contain two useful Alice "Quick Reference” pages. Inside the
front cover is a complete list of the standard methods and functions that can be applied
to an Alice object. Inside the back cover is a complete list of the standard functions that
can be applied to an Alice world. Unlike the lists in Appendix A, these "Quick Refer-
ences” display each method, function, and parameter exactly as they appear in Alice. By
presenting all of these methods and functions together, a student can see all of the meth-
ods and functions at once, and quickly locate a particular method or function.

Copics of the example programs from this book are available online, at
the Student Downloads section of the Course Technology Web site (www.course. com)
the author’s Alice Web site (http://alice.calvin.edu)
A feedback link and errata list are also available at the author's Web site. If you find
a mistake, or want to point out a feature that works especially well, please use that feed-

back link. Such feedback will help me improve future editions of the book.
The Alice 2.0 software can be freely downloaded from http://alice.org.

The computer programmer ... is a creator of universes for which he [or she] alone is the lawgiver ... universes
of virtually unlimited complexity can be created in the form of computer programs. Moreover ... systems so
formulated and elaborated act out their programmed scripts. They compliantly obey their laws and vividly
exhibit their obedient behavior. No playwright, no stage director, no emperor, however powerful, has ever
exercised such absolute authority to arrange a stage or a field of battle and to command such unswervingly
dutiful actors or troops.

JosEPH WEIZENBAUM

[_ fyou don’t know where you re going, you re liable to wind up somewhere else.
YoGI BERRA

Louis, I think this is the beginning of a beautiful friendship.
Rick (HUMPHREY BOGART) TO CAPTAIN RENAULT (CLAUDE RAINS), IN CAS4BLANCA

i Objectives

Upon completion of this chapter, you will be able to:

i I Design a simple Alice program
L Build a simple Alice program
0 Animate Alice objects by sending them messages
[} Use the Alice doInOrder and doTogether controls
1 Change an object’s properties from within a program

Use Alice’s quad view to position objects near one another

2 Sedion 1.2 The Alice Tutorials

I
Welcome to the fun and exciting world of computer programming! In this chapter,
we are going to build our first computer program using Alice, a free software tool for cre-
ating virtual worlds.
1.1 Getting and Running Alice
1.1.1 - Downloading Alice
Alice can be freely downloaded from the Alice website at http://alice.org. For the
Windows version, clicking the download link begins the transfer of a compressed archive
file named Alice.zip to your computer. (For MacOS, the file is named Alice.dmg.)
Save this file to your computer’s desktop.
1.1.2 Installing Alice
Alice does not have a special installer like other programs you might have used. When
the download has finished, double-click the Alice.zip (or Alice.dmg) file to open the —
archive file. Your computer will open a window containing a folder named Alice. Drag ' o Fi¢
that Alice folder from the window onto your computer’s desktop. ' -
If you'd rather not have the alice folder on your desktop, open a window to the
folder in which you wish to store alice (for example, ¢:\Program Files\). Then drag
the Alice folder from your desktop into that window. » He
Once the alice folder is where you want it, open the Alice folder, and locate the : ’ St
file named Alice.exe (or just Alice in MacOS). In Windows, right-click the file, and - oo Re
from the menu that appears, choose Create Shortcut to create a shortcut (alias) to S yo
Alice.exe. (MacOS users, select the file and choose File->Make Alias.) Drag the ste
resulting shortcut to your desktop and rename it Alice, so that you can launch Alice wi
conveniently. S : ,
. . : ‘ . nc
1.1.3 Running Alice - 0
To start Alice, just double-click the Alice icon on your desktop. Congratulations! ‘ S;z]
t

1.2 The Alice Tutorials l, | | ay

, ity
As shown in Figure 1-1, when you start Alice for the first time, Alice gives you the option : ck
of working through a set of interactive tutorials. These excellent tutorials cover the basics . pt
of using Alice while giving you hands-on practice working in the Alice environment.
Because they are such effective learning tools, we are going to let these tutorials teach es
you the basics of Alice. This chapter will concentrate on aspects of Alice ot covered in W

the tutorials.

re

Getting Started With Alice 3

Start
the P
Tutorial

Tutoriall Tutorial2 Tutorial3 Tutoriald

I¥i Show this dialog at start

(If this window does not appear, you can make it appear by clicking on Alice’s
Help menu and then selecting the Tutorial choice.) To activate the tutorials, click the
Start the Tutorial button, and then work your way through the four tutorials.
Remember, the point of these tutorials is to learn how to use Alice, not to see how fast
you can finish them. Read carefully, taking special note of what you are doing at each
step, how you are doing it, and why you are doing it. Close Alice when you are finished
with the tutorials.

The rest of this chapter assumes you have completed the tutorials, so if you have
not yet done so, you should complete the tutorials now, before proceeding further. If for
some reason you cannot complete the tutorials right away, feel free to keep reading, but I
strongly encourage you to complete the tutorials as soon as possible, and then re-read
this chapter.

Developing programs to solve problems is a complex process that is both an art and
a science. It is an art in that it requires a good deal of imagination, creativity, and ingenu-
ity. But it is also a science in that it uses certain techniques and methodologies. In this
chapter, we're going to work through the thought process that goes into creating com-
puter software.

If you can manage it, the very best way to read this book is at a computer, doing
cach step or action as we describe it. By doing so, you will be engaging in active learning,
which is a much better way to learn than by trying to absorb the ideas through passive

reading.

4 Sedion 1.3 Program Design

1.3 Program Design

Now that you have finished the tutorials, we are ready to build our first computer pro-
gram and put into practice several of the skills you learned in the tutorials. Programming
in Alice is similar to filmmaking, so let’s begin with how a film is put together.

When filmmakers begin a film project, they do not begin filming right away. Instead,
they begin by writing. Sometimes they start with a short prose version of the film called a
treatment; eventually they write out the film’s dialog in a screenplay, but they always
begin by writing, to define the basic structure of the story their film is telling.

A screenplay is usually organized as a series of scenes. A scene is one piece of the
story the film is telling, usually set in the same location. A scene is usually made up of
multiple shots. A shot is a piece of the story that is told with the camera in the same
position. Each change of the camera’s viewpoint in a scene requires a different shot. For
example, if a scene has two characters talking in a restaurant, followed by a closeup of
one of the character’s faces, the viewpoint showing the two characters is one shot; the
viewpoint of the closeup is a different shot.

Once the screen play is complete, the filmmaker develops storyboards, which are
drawings that show the position and motion of each character in a shot. Each storyboard
provides a sort of blueprint for a shot, indicating where the actors stand, where the cam-
era should be placed with respect to them, and so on. (You may have seen storyboards on
the extras that come with the DVD version of a film.)

Creating an Alice program is much like creating a film, and modern computer soft-
ware projects are often managed in a way that is quite similar to film projects.

1.3.1 User Stories

A modern software designer begins by writing a prose description of what the software is
to do, from the perspective of a person using the software. This is called a user story. For
example, here is a user story for the first program we are going to build:

When the program begins, Alice and the White Rabbit are facing each other, Alice on the
left and the White Rabbit on the right. Alice turns her head and then greets us, The
White Rabbit also turns and greets us. Alice and the White Rabbit introduce themselves.
Simultaneously, Alice and the White Rabbit say “Welcome to our world.”

A user story provides several important pieces of information, including:

A basic description of what happens when the user runs the program
The nouns in the story (for example, Alice, the White Rabbit) correspond to the
objects we need to place in the Alice world. Objects include the characters in the
story — background items like plants, buildings, or vehicles, and so on.

* The verbs in the story (for example, turns, says) correspond to the actions we want
the objects to perform in the story.

® The chronological flow of actions in the story tells us what has to happen first, what
happens next, what happens after that, and so on. The flow thus describes the
sequence of actions that take place in the story.

Getting Started With Alice 5

By providing the objects, behaviors, sequence ol actions, and deseription of what
the program will do. a user story provides an important first step in the software design
process, upon which the other steps are based. The user story is to a good soltware prod-
aet as the sereenplay is to a good film.

It is olten useful to write out the flow of the story as a numbered sequence of
abjects and actions. For example, we can write out the flow in the user story as shown in

Fioure 1-2:

Scene: Alice is on the left, the White Rabbit is on the right.

Alice turns her head toward the user.

Alice greets the user.

The White Rabbit turns to face the user.

The White Rabbit greets the user.

Alice introduces herself.

The White Rabbit introduces himself.

Simultaneously, Alice and the White Rabbit say "Welcome fo our world”.

A flow is thus a series of steps that precisely specify (in order) the behavior of each
object in the story. In programming terminology, a flow — a sequence of steps that solve
a problem — is called an algorithm.

1.3.2 Storyboard-Sketches

\When they have a completed screenplay, filmmakers often hire an artist to sketch each
shot in the film. For cach different shot in each scene, the artist creates a drawing (in
consultation with the filmmaker) of that shot, with arrows to show movements of the
characters or camera within the shot. These drawings are called storyboards. When
completed, the collection of storyboards provides a graphical version of the story that the
lilmmaker can use to help the actors visualize what is going to happen in the shot, before
(ilming begins.

To illustrate, Figure 1-3 shows a pair of storyboards for a scene we will develop in
Section 2.4.1. The first storyboard frames the scene, showing three trolls menacing a
wizard, with the wizard's castle in the background. In the second storyboard, we zoom in
on the wizard to get a better view of his reaction. The progression of storyboards thus
serves as a kind of cartoon version of the story, which the filmmaker uses to decide how
the film will ook, before the actual filming begins. By first trving out his or her ideas on
paper, a [immaker can identify and discard bad ideas carly in the process, before time,

cffort, and money are wasted filming (or in our case, programming) them.

6 Section 1.3 Program Design

=Y

Scene 2 Shot 1 Scene 2 Shot 2

FIGURE 1-3 A storyboard and corresponding scene

In a similar fashion, the designers of modern computer software draw sketches of
what the screen will look like as their software runs, showing any changes that occur.
Just as each distinct shot in a film scene requires its own storyboard, each distinct screen
in a computer application requires a different sketch, so we will call these storyboard-
sketches. Since our first program has just one scene, it has just one storyboard-sketch, as
shown in Figure 1-4. '

1.4

NS
o 0 Qe

Green Grass f

FIGURE 1-4 Storyboard-sketches

Getting Started With Alice 7

In Alice programming, the storvboard-sketches provide important information for
he programmer about cach object visible on the screen, including:
Its position (where it is with respect to the other objects)
its pose (what are the positions of its limbs., it it has any)
tts orientation (what direction it is facing)

Storvboard-sketches also indicate where Alice’s camera object should be positioned,
« hether it is stationary or moving during the shot, and so on.

1.3 Transition Diagrams
Ahen a program has multiple scenes, it has multiple storvboards. When all the story-
“ourd-sketches are completed, they are linked together in a transition diagram that
s any special events that are required to make the transition from one sketch to the
et Ina movie, there are no special events, so the transition diagram is a simple linear

oquence, as shown in Figure 1-5.

Scene Scene Scene
(%)

With a user story, storyboard-sketches, and transition diagram in hand, the program’s
design is done, and we are ready to build it in Alice. We begin by starting Alice. Alice dis-
plays a Welcome to Alice window that allows us to choose a Template (background
and sky) for the world, as shown in Figure 1-6.

8

Section 1.4 Program Implementation In Alice

[¥] Show this dialog at start

FIGURE 1-6 Alice’s template worlds

(You can also get this window to appear by clicking Alice’s File menu, and then
choosing New World.) Double-click the template you want to use (we will choose the
grass template here), and Alice will create a pristine! three-dimensional world for you,
using that template, as shown in Figure 1-7. (Your screen may look slightly different.) For

consistency with the tutorials, we have added the names for the various areas in Alice to
Figure 1-7.

I. Here and elsewhere, we will use the word pristine to describe an Alice world in its beginning state — before any
objects have been added to it.

Chapter 1 Getting Started With Alice 9

world window

@Alice(ﬁu:/b/zbaﬁ)' . e " R o B .] s N Swhd cvents

Events jcreate new avontl

WHen the world starts, do " world.my first mathod {); =

public void my_first_meth

~Jamwemwnnd| editing

{Do Nothing

. defails

toop while. :{orAlinOrdef) *forAllTogether, ' wahi{ du

FIGURE 1-7 A pristine Alice world

Menus

At the top of the Alice window are four menus:

File lets you load and save your Alice programs/worlds (and other things).
Edit lets you change your preferences.

Tools lets you examine your world’s statistics, error console, and so on.
Help lets you access the Alice tutorials, some example worlds, and so on.

Buttons

Below Alice’s menus are three buttons:

® Play runs the program associated with the current world.
® Undo undoes your most recent action (this is very handy!).
® Redo redoes the most recently undone action.

If you are like me, you will find yourself using the Play button frequently (every
time you want to run your program); the Undo buton when using trial-and-error to find
just the right effect, and the Redo button very rarely.

 The Object Tree

The object tree is where the objects in your world are listed. Even in a pristine world, the
object tree contains several objects, namely the camera, the 1ight, and the ground. Like
other objects in Alice, the camera can be moved within the world. Its position determines

10 Section 1.4 Program Implementation In Alice

what is seen in the world window. As you saw in the tutorials, the blue arrow-controls at the

asnap——
bottom of the world window can be used to modify the camera’s position and orientation.
The 1ight can also be moved, though we won't be doing much of that. If you are .
working on a shot and find that you need more light, you can change the 1ight’s posi-
tion, orientation, color, and brightness.
It doesn’t make much sense to move the ground, though we may wish to change it (for
example, from grass to snow, or sand, or ...). We'll see how to do this in Section 2.3 in Chapter 2.
The Details Area
In the details area, there are three tabbed panes: the properties pane, the methods pane,
and the functions pane. For whatever object is selected in the object tree: ;:—K—B_‘
* The properties pane lists the properties or changeable attributes of that object;
* The methods pane lists the messages we can send that object to animate it; and
® The f'unctions pane lists the messages we can send that object to get information usir
from it. - the
. with
Take 2 moment to click through these panes, to get a feel for the things they con- to
tain. We'll present an overview of them in Section 1.5. - ’
The Editing Area 14
g O
The editing area is where we will edit or build the program that controls the animation. lear
As can be seen in Figure 1-7, the editing area of a pristine world contains a method loce
named World.my first method that is empty, meaning it contains no statements. Very Pel
shortly, we will see how to build our first program by adding statements to this method. ing

At the bottom of the editing area are controls (doInOrder, doTogether, if, loop,
and so on) that can be used to build Alice statements. We will introduce these controls
one by one, as we need them, throughout the next few chapters.

The Events Area

The events area is where we can tell Alice what to do when special actions called events
occur. A pristine world contains just one event, as can be seen in Figure 1-7. This event
tells Alice to send the my first method message to the World object when the world
starts (that is, when the user clicks the P1ay button). Clicking the p1ay button thus
causes my first method to run, meaning any statements within it are performed. Pro-
grammers often use the phrases run a program and execute a program interchangeably.

1.41 Program Style

Before we begin programming, you may want to alter the style in which Alice displays the
program. Click the Edit menu, followed by the Preferences choice, and Alice will dis-
play the Preferences window shown in Figure 1-8.

-+ Getting Storted With Alice 11

8 “j maximum nunber of worlds kept in the recent worlds menu

display iy program: | Alice Style -
lAlice Style

_____ Wava Style in Color' [\ -
|r1s | generalfiJava Style in Black & IJ

save and load from: [Adams'My Documents'Alice ; [Browse...

Since Java is a popular programming language, we will be displaying our programs
using Alice’s Java style in Color. By doing so, Alice will provide us with an introduction to
the Java we will learn later in the course. If you want your programs to look consistent
with those in the text, please make this change on your copy of Alice. You will then need
to restart Alice for the changes to take effect.

1.4.2 Adding Objects fo Alice

Once we have a pristine world, the next step is to populate it with objects using the skills you
learned in the Alice tutorials. By clicking the AbD 0BJECTS button below the world window,
locating class AliceLiddell and class WhiteRabbit in the Alice Gallery (under
People and Animals, respectively), adding them to the world, and repositioning and rotat-

ing them, we can build the scene from our first storyboard-sketch, as shown in Figure 1-9.

e A A S S

12 Seciion 1.4 Program Implementation In Alice

bey
. sel
ob
list
the
In
he
Hc¢
pa
he
sel
FIGURE 1-9 Alice Liddell and the White Rabbit

The items in the Alice Gallery are not objects but are like blueprints that Alice uses
to build objects. Such blueprints are called classes. Whenever we drag a class from the
Gallery into the world window, Alice uses the class to build an object for the world.

For example, when we drag the AliceLiddell and WhiteRabbit classes to the
world, Alice adds two new objects to the world, and lists them in the object tree:
aliceLiddell and whiteRabbit. If we were to drag Class WhiteRabbit into the
world again, Alice would again use the class to create an object for the world, but this
object would be named whiteRabbit2. Feel free to try this; you can always delete E 1
whiteRabbit2 (or any object in the object tree), either by dragging it to the Trash, or by § 1
right-clicking it and selecting delete from the menu that appears. f

The key idea is that each object is made from a class. Even though the world might
contain ten whiteRabbit objects, there would still be just one WhiteRabbit class from
which all of the whiteRabbit objects were made.

To distinguish objects from classes, Alice follows this convention: each word in the] —
name of a class is capitalized (for example, AliceLiddell, WhiteRabbit); but for an ' F
object, each word in the name except the first is capitalized (for example, aliceLiddell, fl —
whiteRabbit). |

If you don’t like the name Alice gives an object, you can always rename it by (1)
right-clicking the object’s name in the object tree, and (2) choosing rename from the B e
menu that appears, and (3) typing your new name for the object. Alice will then update £ ta

all statements that refer to the object to use the new name.

Chapter 1 Getfing Started With Alice 13

With the objects aliceLiddel and whiteRabbit in place, we are almost ready to
begin programming! In Alice, programming is accomplished mainly in the object tree (to
- select the object being animated), the details area (the properties or characteristics of an
: -object are listed under the properties tab, and the messages we can send an object are
listed under the methods and functions tabs), and the editing area (to add statements to
the program that animate the selected object).

143 Accessing OBiecI Subparts

In the user story, the first action is that Alice should seem to see us (the user) and turn
her head toward us. To make this happen, we will use skills from the Alice tutorials.

If we click on aliceLiddell in the object tree, then we select all of aliceLiddell.
However, the user story says that Alice is to turn her head, so we just want to select that
part of her. To do so, we click the + sign next to aliceLiddell in the object tree to view
_“her subparts, and then do the same on her neck, exposing her head, which we then
select as shown in Figure 1-10.

eaj].move(dlrectlonl, Az}

ead!.turn(dlrectlon}, i

eadi.roll(dlrectlon],

ead|.resize{ amounti);} ’

FIGURE 1-10 Accessing an object’s subparts

As can be seen in Figure 1-10, when we click on an object in the object. tree (for
example, Alice Liddell’s head), Alice draws a box around that object in the world window,
to highlight it and show its boundaries. This box is called an object’s bounding box, and
every Alice object has one.

14 Section 1.4 Program Implementation In Alice

Selecting an object’s subpart in the object tree also changes the details area to indi-
cate the properties, methods, and functions for that subpart.

Since the steps in a flow or algorithm need to be performed in a specified order, we

begin programming by dragging a doInorder control from the bottom of the editing area,
as shown in Figure 1-11.

T@ world.my first method

public void my_first_method () {

créate new variable

‘B dolnOrder {

3
r - R
1 ;;doanrder):.;‘q_'l’oggther

FIGURE 1-11 Dragging the dornorder control

, object); i

The doInorder coritrol is a structure within which we can place program statements (see
Section 1.4.7 below). As its name suggests, any statements we place within the doInorder will
be performed in the order they appear, top-to-bottom. The doInorder control also has addi-
tional convenient features that we will see in later chapters.

1.44 Sending Messages

Alice programming consists largely of seriding messages to objects.

You can get an object to perform a desired behavior by sending the object a message
that asks the object to produce that behavior.

In Alice, behavior-producing messages are called methods, and are listed under the
methods pane of the details area.

To illustrate, step 1 of the algorithm is to make Alice Liddell’s head turn to look at
the user. To accomplish this, we can send aliceLiddell.neck.head the pointAt ()
message, and specify the camera as the thing her head is to face. (Similarly, to make the
White Rabbit say “Hello”, we can send whiteRabbit the say() message, and specify
Hello as the thing we want him to say.) With Alice Liddell's head selected in the object
tree, we scan through the methods in the details area until we see pointat (). We then
click on pointat (), drag it into the editing area, and drop it.

Getting Started With Alice 15

19, a method, Alice surrounds it with a red border so long as the mouse is in a

\s we di
nefit. When the mouse moves into an arca where we can

place where dropping it has no be
hod beneficially, Alice changes the method's border's color from red to green.
d to warn you that you should not do something (for exam-
color green to indicate when you nuay do something.

t — the thing at which we

Llu)]) the met
\ice consistently uses the color re
drop the method), and uses the

i'he pointAt () message requires that we spcci('_\' a1 targe
II's head to point. When you drop the pointat() method in the editing
nu of the objects in your world, from which you can choose the

‘)l('.

want Alice Lidde
reas Alice displays a me
target. as shown in Figure 1-12.

B neck
Felhicad

& lowerBody e i —
5.ﬁworld.my first methodld
" public void my_first_method () {

head's details

] praperties lme(ho(ls functions b

e

head .moveTo{ asSeenBy doInOrder{
head .moveToward(targe | O Mothing |
head .moveAwayFrom(t 1

head .orientTo{ asSeenB camera

head . light ﬁ
g) {13 ground
AL whiteRabbit > T :
y .dolnOrder _do‘ﬁ aliceLiddell }Ml’ll(e forAI!anrder

When we select the camera, Alice redraws the editing area as shown in Figure 1-13.

O world.my first method| -~ S
public void my_first_method (){

dolnOrder {
aliceLiddell.neck.head .pointAt{ camera): more..

1.4.5 Testing and Debugging

I we now click the Pray button, you will see aliceLiddell’s head turn and seem to

look at you (the user)! Figure 1-1 4 shows the end result.

16 Section 1.4 Progrom Implementation In Alice

FIGURE 1-14 Alice Liddell looks at the user

(If you are not at a computer doing this interactively, compare Figure 1-14 to Figure 1-9
to see the effect of sending Alice’s head the pointat (camera) message.)

By clicking the Play button, we are testing the program, to see if it produces the
desired result. If the program does something other than what we wanted, then it con-
tains an error or bug. Finding and fixing the error is called debugging the program. If
you have followed the steps carefully so far, your program should have no bugs, so let’s
continue. (If your program does have a bug, compare your editing area against that
shown in Figure 1-13 to see where you went wrong.)

1.4.6 Coding the Other Actions

We can use similar steps to accomplish actions 2, 3, 4, 5, and 6 of the algorithm in Figure 1-2
by sending pointAt () or say () messages to aliceLiddell or the whiteRabbit. When
we send an object the say () message, Alice displays a menu from which we can select
what we want the object to say. To customize the greetings, select the other. .. menu-
choice; then in the dialog box that appears, type what you want the object to say. After a
few minutes of clicking, dragging, and dropping, we can have the partial program shown in
Figure 1-15.

Chapter 1 Getting Started With Alice 17

@ world.my first method | E2
public void my_first_method () {

f

cel.iddell.neck.head = §.pointAf(camerav—j J; more...™

“aliceLiddell = |.say{ Oh, hello therel~ 13; duration =2 seconds = | fontSize =30 = | more...~

HlteRabbitv}.p_oingAt(came’r‘a'f’}); more...~

vhiteRabbit = j say(Uhm, yes. Hello theret~ | }; duration=2 seconds.~ | fontSize =30 =] more...~

icel.iddell.— }.say(My name is Alice Liddélﬂ); duration = 2 seconds = ifontSize =30~ imore... <

hiteRabbit ﬂ.say(And | am the White Rabbit. < |); duration =2 seconds < !fontSize =30~ f more...<

3

“FIGURE 1-15 A partial program

By clicking on the more. . . to the right of a message in the editing area, we can cus-
tomize various attributes of that message. For example, in Figure 1-15, we have increased
" the duration attribute of each say () message (depending on the length of what is being
" said), to give the user sufficient time to read. '

‘For say () messages, set the duration to 2-3 seconds per line of text being displayed,
‘to give the user time to read what is being said. o D

You can also adjust the fontsize (and other attributes) to specify the appearance of
a say() message’s letters. We will always use a fontSize of at least 30, to ensure that
the letters display well on high-resolution computer screens (see Figure 1-15).

1.4.7 Statements

Most of the lines in the program have the same basic structure:
object . .message(value); more...

In programming terminology, such a line is sometimes called a statement. A com-
puter program consists of a collection of statements, the combination of which produce
. some desirable behavior. The basic structure shown above is quite common, and is what

= we will use most often.

: The doInorder control is also a statement; however it is a statement that controls
* how other statements are performed (that is, one at a time, top-to-bottom).

Section 1.4 Progrom Implementation In Alice

1.4.8 The Final Action

We are nearly done! All that is left is the final step in the algorithm, in which Alice Lid-
dell and the White Rabbit say “Welcome to our world” simultaneously. It should be evi-
dent that we can accomplish this in part by sending say () messages to aliceLiddell
and the whiteRabbit. For both objects, the value accompanying the say() message
should be the same value: Welcome to our world.

and t
statel

—

As we have seen, the doInOrder control performs the first statement within it,
then the next statement, then the next statement, and so on. This is sometimes called
sequential execution, meaning the statements are performed in order or in sequence.
Sequential execution means that if we were to send aliceLiddell the say() message,
and then send whiteRabbit the say() message, the message to the White Rabbit
would not be performed until after the message to Alice Liddell had been completed.

To achieve the effect specified in the user story, we must send say() messages to
aliceLiddell and the whiteRabbit simultaneously. We can accomplish this using the
doTogether control, located at the bottom of the editing area. To use this control, we
click on doTogether, drag it upwards into the editing area, and drop it when the green
bar appears below the last statement in the program, producing the program shown in
Figure 1-16.

TO world.my first method

public void my_first_method () { :
create new variable
J
i
S

EldolnOrder { :
" ([TaliceLiddelt.neck.head < |.pointAt{ camera~|); more...~

aliceLiddell ~ |-say(Oh, hello therel - | }; duration =2 seconds = |fontSize =30.~]mm <

whiteRabbit ~ ;.pqlntAt(camera~ | }; more...~
whiteRabbit —j say(Uhm, yes. Hello therel - | }; duration =2 seconds - |fontSize =30 ~ | more...~

[V L

aliceLiddell ~ | .say(My name Is Alice Liddell, - { }; duration =2 séconds = rfontSize =30~ (more <

whiteRabbit ~ | .say{ ‘And | am the White Rabbit. = I), duranon=2tseconds - xfontS:ze 30~ 'more =

doTogether { R
(Do Nathing *] i

RS L W

FIGURE 1-16 Dragging the doTogether control

The doTogether control is another Alice statement. Like the doInorder, it has a °
form different from the object.message() structure we saw previously. When the pro-
gram performs a doTogether statement, all statements within it are performed simulta-
neously, so it should provide the behavior we need to finish the program.

Chapter 1 - Getting Started With Alice 19

Using the same skills we used earlier, we can send say () messages to aliceLiddell
and to the whiteRabbit. However, now we drop these messages inside the doTogether
statement, yielding the final program, shown in Figure 1-17.

@ world.my first metho

public void my_first_method () { : L

Bl doinOrder {
;} alicel.iddell.neck.head < ;.polntAt(camera~ ¥ }); more..~

aliceLiddell — L.say{ Oh, hello therel ~ |); duration=2 seconds ~ |fontSize =30 -~ more...=

: whiteRabbit = | pointAt{ camera~|); more..~ .

¥ whiteRabbit = |.say(Uhm, yes. Hello therel = 1); duration =2 seconds = flo;rSIze =30 more...~
Alice Liddell. -

whiteRabblt - |.say{ And] am the White Rabbit.—]); duration =2 seconds - | fontSize

iceLiddell — i.say(Welcome to our world! vj Y; duration’=2 seconds N ifontSize = 30~ i more...

¥ whiteRabbit < j.say(Welcome to our worldl= | }; duration =2 seconds = fontSize =30 } more.,..~

FIGURE 1-17 Our first program

1.49 Final Tesfing

When we run the program, the final scene appears as shown in Figure 1-18.

Welcome to our world!

L #a

FIGURE 1-18 Alice Liddell and the White Rabbit speaking fogether

20 Section 1.5 Alice’s Details Area

We saw earlier that the Alice doInorder statement performs the statements within
it sequentially. By contrast, the doTogether statement performs the statements it con-
tains simultaneously or concurrently.

1.4.10 The Software Engineering Process

The approach we just used to create our first program is an example of a methodical, dis-
ciplined way that computer software can be created. The process consists of the follow-
ing steps:

1. Write the user story. Identify the nouns and verbs within it. Organize the nouns
and verbs into a flow or algorithm. ‘

2. Draw the storyboard-skeiches, one per distinct shot in your program, and create a

_transition diagram that relates them to each other. If you have some users avail-

able, have them review your sketches for feedback, and take seriously any
improvements they suggest. Update your user story and algorithm, if necessary.

3. For each noun in your algorithm: add an object to your Alice world.-

4. For each verb in your algorithm:

a. Find a message that performs that verb’s action, and send it to the verb’s.
object. (If the object has no message that provides that verb’s action, we'll see
how to build our own methods in Chapter 2.)

b. Test the message sent in Step 4a, to check that jt produces the desired
action. If not, either alter how the message is being sent (with its more...
attributes), or find a different message (and if you cannot find one; build
your own). '

-

Steps 1 and 2 of this process are called software design. Steps 3 and 4 — in which
we build the program and then verify that it does what it is supposed to do — are called
software implementation and testing. Together, software design, implementation, and
testing are important parts of software engineering — a methodical way to build com-
puter programs.

We will use this same basic process to create most of the programs in this book. You
should go through each of these steps for each program you write, because the result will
be better-crafted programs.

- A~

1.5 Alice's Details Area

As mentioned earlier, Alice’s details area provides three tabbed panes. Whenever an
object is selected in the object tree, these three panes list the properties or characteristics
of that object, the methods for that object, and the functions, or questions that we can ‘
ask that object. In this section, we provide an overview of this details area.

Chapter 1 Getting Started With-Alice 21

~1.5.1 The properties Pane
"o see the properties of an object, first click on that object in the object tree, and then
- _click the properties tab in the details area, as shown in Figure 1-19.

olntOfView}= position: -1.35, 0, 1.37; ‘orientation: (0, 0.4, 0}0.92~
sSho&v@g=~ _true»t;
Seldom Used Properties

Sounds
9t Texture Maps

FIGURE 1-19 The properties pane

Here, we can see an object’s properties, including its color, opacity, vehicle, skin tex-
ture, fill style, point of view (position + orientation), and whether or not it is showing.
The values of an object’s properties determine the object’s appearance and behavior
when you run your program. Feel free to experiment with these settings, to see what they
do. (You can always use Alice’s Undo button if you make a mistake.) For example, if the
. White Rabbit’s ghost were an object in the story, we might add a whiteRabbit to the
- world, and change its opacity to 30%, so that 70% of the light in the world passes through
him. The result would be a ghostly translucent whiteRabbit in the program.

| Changing A Property From Within A Program

When you set an object’s property to a value within the properties pane, that property has
that value when your program begins running, and will keep that value unless your pro-
gram causes it to change. For example, suppose that we wanted the White Rabbit to magi-
cally disappear after he and Alice have greeted us, and Alice to then say, “Now where did he
go this time?” We can easily elicit the required behavior from aliceLiddel by sending her
a say() message; but how do we get the whiteRabbit to disappear before she says it?

There are actually two ways to accomplish this special effect. If we desire the
White Rabbit to disappear instantly, we can do this by setting his isShowing property
to false at the right place in the program. If we want him to disappear slowly (say,

22

Section 1.5 Alice’s Defails Area

over the course of a few seconds), we can do this by setting his opacity property to 0
at the right place in the program, and then modifying the statement’s duration
attribute to the required length of time. Either approach requires that we learn how to
set one of the whiteRabbit's properties, so we will use the latter approach, and leave
the use of the first approach as an exercise.

To set an object’s property to a different value at a specific point in the program, we
click that property in the properties pane, drag it into the editing area until a green bar
appears at the right spot in the program, and drop it. Alice will then display a drop-down
menu of the options for the property’s new value, as can be seen in Figure 1-20.

aliceLiddell.neck.head ~ {.pointAt(camera~ |); more...~

aliceLiddell - | .say{ Oh, hello therel = | }; duration =2 seconds < |:

whiteRabbit ~].polntAt(camera~ |); more...™

whiteRabbitvji.say(Uhm, yes. Hello therel <

); duration=2 sec

aliceLiddell ~ [.say(My name is Alice Liddell. = |); duration=2s¢
whiteRabbit < '|.say(: And | am the White Rabbit. ~ !); duration=2

me to our world! - ' }; duration=2:

FIGURE 1-20 Setting a property by dragging it into the editing area

When we select a value from that menu, Alice inserts a new statement into the editing
area. This statement sends a special set () message to the whiteRabbit, telling it to set
its opacity property to the value we selected from the menu. By default, the duration of
this set () message is one second, so to make the White Rabbit disappear more slowly, we
set it to two seconds, yielding the statement shown in Figure 1-21.

doTogether{
aliceLiddell .say(Welcome to ourworld! }; duration=2 <sconds fontSize=30 more...

whiteRabbit .say(Welcome to ourworldl) duration=2zcronds fontSize=30 more...

}

whiteRabbit .set{ opacity, 0(0%)): duration=2 seconds more..

Adding the statement to make Alice say "Now where did he go this time?”
straightforward, and is left as an exercise.

1.5.2 The methods Pane

- Getfing Storted With Alice 23

is

Click the methods tab of the details area and you will see the behavior-generating mes-
sages that you can send to the object selected in the object tree. Figure 1-22 shows some

of the behavior-generating messages that are common to all Alice objects; a complete list

is given in Appendix A.

1 whiteRabbit's details

create new me! hod

ST

\(eraperiey

“whiteRabbit .move({ direction, amount };
1. whiteRabbit .turn(direction , amount);
| whiteRabbit roli{ direction , amount);

4 whiteRabbit .resize{ amount);

whiteRabbit .say(what);
whiteRabbit .think(what };
" whiteRabbit .playSound({ sound };

1 whiteRabbit .moveTo(asSeenBy });

whiteRabbit .moveToward(target , amount
whiteRabbit .moveAwayFrom(target . amour ,
whiteRabbit .orientTo(asSeenBy); ;
whiteRabbit .

turnToFace(target);

24 Section 1.5 Alice’s Details Area

These messages provide a rich set of operations that, together with the doTogether
and doInOrder controls, let us build complex animations. Since we can send these mes-
sages to any Alice object, they allow us to build worlds containing talking animals, danc-
ing trees, singing buildings, and just about anything else we can imagine!

The resize() message is especially fun, as it lets you make an object change size
(for example, resize(2) to grow twice as big, or resize(0.5) to shrink to half size) as
your program runs. The resize() message’s more... menu includes a dimension
choice that you can use to change an object's width (LEFT_TO RIGHT), height
(TOP_TO_BOTTOM), or depth (FRONT_TO_BACK), letting you create some interesting visual
effects as your program runs.

In addition to these basic messages, some Alice objects respond to additional (non-
basic) messages. For example, in the People folder of the Alice Gallery are tools called
the heBuilder and sheBuilder that allow you to build custom male and female charac-
ters for your world. Each “person” built using one of these tools will respond to the addi-
tional messages. Figure 1-23 shows a person built using the heBuilder, whom we have
renamed bob, and the non-basic messages that can be sent to such a person.

“stand
: ShowAllAnimations [edit]

g create new method

" bob i.mo;le(diféctidnf, én
" bob turn(direction , amd

bbob .roii(dlfe;tiqn}, amo

i bob .resize(amohht)3

FIGURE 1-23 Non-basic methods

Chopter 1 Getting Started With Alice 25

Other Alice classes (for example, Frog, Monkey, Penquin) provide different non-
basic methods. To discover them, just add an object to your world and see what methods
appear in the details area.

153 The functions Pane

If we click the functions tab in the details area as shown in Figure 1-24, we will see the
list of functions or question messages that we can send to the object selected in the
object tree. '

""= : proximity
' ! IsCloseTo(threshold ; object:)]
obl.isFarFrom(threshold] object|}]
bob|.distanceTof: object])]
ob delgﬁﬁbgTdThefeﬂdf(f object])}
ob|.distanceToTheRightOf(; object!)]
ob.distanceAbove(object])]
obi.glsfaﬁ#éééloy&(f object])J
 bob|.distancelnFrontOf(; object])J
bob|.distanceBehind(object:)]

ob 5.1$SmallérThan(-% object|)}

obf,lsLargerTh;rj('l object|)]

ob .isNarrowerThan(_ object|}| ‘

FIGURE 1-24 The functions pane

Functions are messages that we can send to an object to retrieve information from
it. Where the methods tab provides standard behavior-generating messages, the functions
tab provides a set of standard messages that we can send to an object to “ask it a ques-
tion.” The standard Alice functions let us ask an object about its:

proximity to another object (that is, how close or how far the other object is)

size (its height, width, or depth, and how these compare to another object)

spatial relation to another object (position or orientation with respect to the other
object) , -

point of view (position and orientation within the world)

subparts '

26 Sedion 1.6 Nlice Tip: Positioning Objects Using Quad View

Many of these standard functions refer to an object’s bounding box (or one of its
edges) that we saw in Section 1.4.3.

Alice also provides a different group of function messages we can send to the world.
That is, if we select the world object and then the functions tab, Alice displays a group of
world functions, some of which are shown in Figure 1-25.

y

FIGURE 1-25 The world functions pane

We will see how to use these different kinds of messages in the coming chapters.

1.6 Alice Tip: Positioning Objects Using Quad View

In the Alice tutorials, we saw how the ADD OBJECTS button in the world window lets us
navigate the Alice Gallery, locate classes, and use them to add objects to the world.

Getting Started With Alice 27

BBy default, ADD OBJECTS displays just the world window. However, trying to position
Ao objects in close proximity to one another (or example, trying Lo position a person on
e hack of o horse) can be difficult using this single window. since it offers just one view.
[or such situations, Alice has the quad view that provides the world window, plus views
Feom the top, right, and front of the scene. To usce it, click the quad view radio button

sear the top of the window. as shown in Figure 1-26.

.. Play [oundo || - f’—} .
L ! :

S world

[aliceLiddell
DrightArm
D t1eftArm
Bneck

hiteRabbit's details

arties [methods _

" creats new method

wititeRabbit .move({ direction . amount).
! whiteRabbit turn{ direction , amount)
. whiteRabbit .roll{ direction , amount }:

whiteRabbit .resize{ amount):

ahiteRabbit .say{ what):
' whiteRabbit think(what):

. whiteRabbit .playSound{ sound):

As can be seen above, the quad view provides two additional controls:

4 “hand” control that lets you (within any of the views) drag the mouse to move the
camera left, right, up, or down to view a different part of the scene

a “magnifying glass” control that lets you drag the mouse down to zoom the camera
i on some detail of the scene, or drag up to zoom the camera out to see more of

the scene

These additional controls are very useful when you shift to the quad view and the
characters you wanted to see are nowhere to be seen. When this happens, just click the
maenifying glass and then drag up within the view to zoom out until the characters
Levome visible (probably very small), switch to the hand control and move the camera
antil the characters are centered, then switch back to the magnifying glass and drag

Jowr within the view to zoom back in.

v
t

28 Section 1.7 Chapter Summary

1.7 Chapter Summary

O The user story describes the behavior of a computer program.

0 Storyboard-sketches indicate the appearance of each of the program’s scenes.

Q Transition diagrams relate the storyboard-sketches to one another.

2 A flow or algorithm provides a concise summary of the user story.

0 The basics of using Alice include: how to add an object to a world; how to set its initial
position, orientation, and pose; how to animate an object by sending it a message; how
to select an object’s subparts; how to change an object’s properties; and how to send

multiple messages simultaneously.

1.7.1 Key Terms

algorithm
bounding box
bug

class
concurrent execution
debugging
flow

function
message
method
object
orientation
point of view

Programming Projects

position

pose

property

sequential execution
simultaneous execution
software design :
software engineering
software implementation
software testing
statement
storyboard-sketches

user story

1.1 Modify the world we created in Section 1.4 so that, after Alice and the White Rabbit
introduce themselves, Alice tells the user she and the White Rabbit would like to
sing a duet, after which they sing a simple song, such as Mary Had A Little Lamb.
Have Alice and the White Rabbit sing alternate lines of the song.

Mary had a litfle lamb,

little lamb,

little lamb,

Mary had a litle lamb

it's fleece was white as snow.

And everywhere that Mary went,
Mary went, ‘
Mary went.

And everywhere that Mary went
the lamb was sure to go.

It followed her to school one day,
school one day, ’

school one day.

It followed her.to school one day
which was against the rules.

It made the children laugh and play,
laugh and play,

laugh and play.

It made the children laugh and play
to see a lamb at school.

Chapter 1 Getting Started With Alice 29

‘1.2 Finish the world we modified in Section 1.5.1, so that the movie ends with
aliceLiddell saying, Now where did he go this time? Modify the world so that the
whiteRabbit disappears instantly. Modify the world to make a pop sound when the
whiteRabbit disappears. : :

If your computer has a microphone, modify the world we created in Section 1.4,
using doTogether controls and playSound() messages to record voices for Alice
and the White Rabbit, so that the user can hear what each character says instead of
having to read it. Alter your voice for each character.

Using any two characters from the Alice Gallery, design and build a world in which
one tells the other a knock-knock joke. (If you don’t know any knock-knock jokes,
see www.knock-knock-joke.com). Make your story end with both characters
laughing.

Using the heBuilder or sheBuilder (under People in the Local Gallery), build
a superhero named Resizer, who can alter his or her size at will. Build a world in
which Resizer demonstrates his or her powers to the user by growing and shrink-
ing. Make sure that Resizer tells the user what he or she is going to do before
doing it.

Build a world containing one of the hopping animals (for example, a bunny or a
frog). Write a program that makes the animal hop once, as realistically as possible
(that is, legs extending and retracting, head bobbing, and so on). Bonus: Send your
animal playSound() messages, so that the predefined sound thudl is played as it
leaves the ground, whoosh2 is played while it is in the air, and thud2 is played when
it lands.

Using the heBuilder or sheBuilder (under People in the Local Gallery), build
a person. Place the person in a world containing a building. Using the walk(),
move (), and turn() messages, write a program that makes him or her walk around
the building.

Using the heBuilder or sheBuilder (under People in the Local Gallery), build
a person. Then build a world containing your person and one of the items from the
sports section of the Gallery (for example, a baseball or a basketball). Write a pro-
gram in which your person uses the item for that sport (for example, pitches the

baseball or dribbles the basketball).

Choose one of your favorite movie scenes that contains just two or three characters.
Use Alice to create an animated version of that scene, substituting characters from
the Alice Gallery for the characters in the movie.

Write an original short story (10-20 seconds long), and use Alice to create an
animated version of it. Your story should have at least two characters, and
each character should perform at least five actions that combine to make an
interesting story.

Mules is a silly (and confusing!) song with the lyrics shown below (sung to the tune
of Auld Lang Syne). Build a world containing a horse (the closest thing in the Alice
Gallery to a mule) and a person. Build a program that animates the person and horse
appropriately while the person “sings” the lyrics to the song. For example, the person
should point to the different legs (front or back) as he or she sings about them, move

30 Sedion 1.7 Chopter Summary

to the back of the horse when the song calls for it, get kicked as the sixth line is
sung, and so on.

On. mules we find two legs behind, When we're behind the two behind,
and two we find before. we find what these be for —

We stand behind before we find, so stand before the two behind,
what the two behind be for! behind the two beforel

G reat thi
Weeks of

When do

a bagpipe

Objectiv
Upon cor
Q Build
Build
Reus:
Use ¢
Unde

O 0O 0o

Chapter 2
Methods

, Great ihings can be reduced to small things, and small things can be reduced to nothing.
- CHINESE PROVERB
; VV;eks 5f programr;zing can save you hours of planning.
: L ANONYMOUS
- When do you show the consequences? On T¥, that mouse pulled out that cat’s lungs and played them like
a bagpipe, but in the next scene, the cat was breathing comfortably.

MARGE SIMPSON (JULIE KAVNER), IN “ITCHY AND SCRATCHY LAND,” THE SIMPSONS

: Upon corﬁpletion of this chapter, you will be able to:
D ,‘Bruild world-level methods to help organize a story into scenes and shots
) Build class-level methods to elicit desirable behaviors from objects
R‘Aéu’se a class-level method in multiple worlds

Use dummies to reposition the camera for different shots within a scene

Understand how an object’s position, orientation, and point of view are determined

32

Section 2.1 World Methods for Scenes and Shots

2.1

In the last chapter, we saw how to design and build computer programs. We also our
saw how Alice lets us build programs consisting of statements, in which we often send tree
messages to objects. Finally, we saw that Alice provides us with a rich set of predefined cre
messages that let us create programs to generate fun and interesting animations.

Sm——

Alice’s predefined messages provide an excellent set of basic operations for anima-
tion. However, for most Alice objects, these basic operations are all that are predefined;
(The people we can create using the heBuilder and sheBuilder tools are unusual in -
providing methods beyond the basic ones.) The result is that for many of the behaviors
we might want Alice objects to exhibit, there are no predefined methods to elicit those
behaviors. For examplé, a horse should be able to walk, trot, and gallop, but there are no
predefined Horse methods for these behaviors. A dragon or pterodactyl should at least be
able to flap its wings (if not fly), but the bragon and Pterodactyl classes do not provide
methods for such behavior. A wizard should be able to cast a spell, but the wizard class
does not contain a castSpell message.

When an Alice class does not provide a method for a behavior we need, Alice lets-us
create a new method to provide the behavior. Once we have created the method, we can
send the corresponding message to the object to elicit the behavior.

There are actually two quite different reasons for building your own methods. The

first reason is to divide your story into manageable pieces to help keep it more organized. nat

The second reason is to provide an object with a behavior it should have, but does not. In ver

this chapter, we will examine both approaches. As we shall see, the motivation, thought the

process, and circumstances are quite different for these two different approaches. seom
N
G

World Methods for Scenes and Shots -

As we mentioned in Chapter 1, films (and by extension, animations) are often broken

down into scenes, with each scene making up one piece of the story. Scenes can be fur- 1.

ther broken down into shots, with each shot consisting of a set and whatever characters

are in the shot, filmed from a particular camera position. When a film crew has finished 5

one shot, they begin work on the next one. When all the shots for a particular scene are
finished, the shots are combined to form the scene and that scene is done. Work then
begins on the next scene.

Scenes and shots thus provide a logical and convenient way to break a big film
project down into smaller, more manageable pieces. We can use the same approach in
Alice. By organizing your user story into a series of scenes, and organizing each complex
scene into a series of shots, you can work through the story shot by shot and scene by
scene, without being overwhelmed by the size of the project. This approach — in which
you solve a “big” problem by (1) breaking it into “small” problems, (2) solving each
“small” problem, and (3) combining the “small” problem solutions into a solution to the
“big” problem — is called divide and conquer.

2.1.1 Methods For Scenes

To illustrate how this approach can be used in Alice, suppose that we have a user story
consisting of three scenes. When we first start Alice (even before we have added any
objects to the world), we can organize our Alice program to reflect the scene structure of

(Chapter 2 Methods 33

_our user story. To create a method for our first scene, we first select world in the object
tree, make certain that the methods tab is selected in the details area, and then click the
create new method button there, as shown in Figure 2-1.

9 world. my rs metho
public veid my_fi rst_method {

(Do Nothing

[nmomsa]

FIGURE 2-1 The create new method button

Clicking this box pops up a small New Method dialog box into which we can type the
name we wish to give the new method. A method name should usually be (1) a verb or
verb phrase, and (2) descriptive of what it does. Since we are creating a method to play
the first scene, we will choose the name playScenel. '

Method names should begin with a Iowercase Ietter and contam no spaces, If a name '
consls’cs of multiple words, capltahze the ﬁrst letter of each word aﬁ:er the first.

When we click the New Method dialog box’s oK button, Alice does two things:

Alice creates a new pane in the editing area, labeled world.playScenel, contain-
ing an empty method definition for the playScenel () method.

Alice updates the details area, adding playScenel to the world’s list of methods.

If you compare Figure 2-2 (below) to Figure 2-1, you will see both of these changes.

o i e @world playScene1
B public void playScenet () {

Scene1

" (Do Nothing

FIGURE 2-2 A new playScenel() method

34

Section 2.1 World Methods for Scenes and Shots

One way to check that the method is working is to send a say() message to the
world’s ground object in playScenel (), as shown in Figure 2-3.!

world.playScene1

public void playScene1 () {

grqyr{& - f.séy(Thls is sggge:1_ !); dééiléﬁ ;2 ée(j:onqé - fon{S!zgag - v‘mo}e.'.r. -

FIGURE 2-3 A simple method test

However, when we click Alice’s Play button, the warning dialog box in Figure 2-4
appears.

FIGURE 2-4 The “Method Not Called” warning

Alice is warning us that although we have defined a new method, there are no state-
ments in the program that send the corresponding message. The problem is that
my_£irst_method() is empty, and since that is where the program begins running, we
need to send the playScenel () message from within my_£irst_method().

After carefully reading the warning, we click the 0k button to close that window,
and then close the World Running window that appears. We then click on the tab for
my_first_method in the editing area, drag a doInorder control up from the bottom of
the pane, click on world in the object tree, and then drag the playScenel() message
from the details area into the doInorder statement, giving us the (short) program shown
in Figure 2-5.

I Another approach is to have the method perform a print () statement, which is at the bottom of the editing area.
When performed, this statement displays a message at the bottom of the World Running window, but it is awk-
ward to view. (We had to resize the window and then scroll up to see the message.) The print () statement can
also be used to view the value of a variable or parameter (see Chapter 3) when the statement is performed.

Chapter 2 Methods 35

Sl world.playScenet();: °

[mmmmemed] [,

FIGURE 2-5 Sending playScenel() frommy_first_method()

~ Now, when we click Alice’s play button, world.my_first _method() begins run-
-ning. It sends the playScenel() message to world, which sends the say () message to
the ground. If we've done everything correctly, we will see the ground “speak,” as can be

seen in Figure 2-6.

This is scene 1

FIGURE 2-6 The ground speaks

Since the user story consists of three scenes, we can use this same approach to cre-
ate new methods for the remaining two scenes, giving us the my_first method()

shown in Figure 2-7.

36 Section 2.1 - World Methods for Scenes and Shots

“EdolnOrder {
\lorld.playScenﬂ ()
world.playScene2{ };
world.playScene3 (); -
: FIG
FIGURE 2-7 Three new playScene () methods
edit
con
Inside each new playScene method, we can send the ground a distinct say () message detc
(for example, naming that scene). Clicking Alice’s P1ay button should then display those mes-
sages in order. This is a simple way to test that the new methods are working properly. When we -
are confident that all is well, we can begin adding statements to playScenel () to perform the
first scene, adding statements to playScene2 () to perform the second scene, and so on.
2.1.2 Methods For Shots |
We have just seen how a big, complicated project can be broken down into smaller, easier-
to-program scenes. However in a very big project, a scene itself may be overwhelmingly
complicated! In such situations, complex scenes can be divided into simpler (easier-to- _—
program) shots. One good rule of thumb is: FIG
ifyou must use the scroll bar to view'all the stafeméhts in a scene method, divide it into
two or more shot methods. . W - L '
. o S sho

. The idea is that long methods are complicated, and therefore more error prone: If
you keep your methods short and sweet, you'll be less likely to make a mistake — and if
you do make one, it will be easier to find, since you won't have to scroll back and forth
through lots of statements. : :

To illustrate this idea, suppose that the first scene is reasonably simple, and can be
implemented in a method that requires no scrolling. However, suppose that the second
scene is quite complicated, and we estimate that building it would require four or more
screenfuls of statements. We can use an approach similar to what we did in Section 2.1.1
to create a method for each shot. Being systematic, we might name these methods
playScene2Shotl, playScene2Shot2, playScene2Shot3, and playScene2Shot4.

As before, we select wor1d in the object tree, and then click the create new method but-
ton in the details area. When asked to name the first method, we name it playScene2shot1. As
before, Alice (1) updates the editing area with a new pane containing an empty definition for the
new method, and (2) adds the new method to the list of methods in the details area. To test that it
works, we can again send the ground object a say () message, as shown in Figure 2-8.

Chapter 2 Methods 37

i ‘ @ world.playScene2Shot1
public void playScene2Shott (}{

1 ground - Lsay({ This is scene 2, shot 1. ~1); duration =2 seconds ~ : fontSize =30 ~ |more...~

FIGURE 2-8 Testing a shot method

We can then select world in the object tree, click on the world.playScene2 tab in the
editing area, delete the ground.say () message from playScene2(), drag a doInOrdex
control into playScene2(), and finally drag the playScene2Shot1() message from the

details area into the doInorder statement, yielding the definition found in Figure 2-9.

: @_Iplayenez
public void playScene2 (){ :

dolnOrder { . . .
world.playScene2Shot1 (- };

FIGURE 2-9 Calling a shot method from a scene method

If we repeat this for each of the remaining shots in the scene, we get the definition
shown in Figure 2-10. Lo : _

@ world.playScene2

public void playScene2 () { - . ; C .
’) ’ B o ‘ create new variable

= doinOrder { ;
N orId.playSceneﬁShoﬂ()
orld.playScene2Shof2();
orld.playScene2Shot3{);
f-world.playScene2Shotd {);

" FIGURE 2-10 A scene method built from shot methods

38 Section 2.2 Object Methods for Object Behaviors

Now we can add statements to each of the four shot methods to produce the animation
required for that shot. When each is complete, we will have a complete animation for Scene 2!

If we were to draw a diagram of the structure of our program, it would be as shown
in Figure 2-11.

Program

[1
Scene 1 Scene 2 Scene 3

f I T]
Shot 2-1 Shot 2-2 Shot 2-3 Shot 2-4

- e e e

FIGURE 2-11 Structure diagram

Such a diagram or program can have as many pieces and levels as necessary to make
your project manageable. If a shot is complicated, it can be further subdivided into
pieces, and so on.

Scene and shot methods reflect the structure of the story we are telling, and hence
belong to the world we are building. As such, they are properly stored in the object tree’s
world object, since it represents the program as a whole. If you examine the object tree
closely, you will see that all of the other objects in a world — including the camera,
light, ground, and anything else we add to the world — are parts of the world. Because
we store scene and shot messages in the world object, these messages must be sent to it,
as we see in Figure 2-10.

In Alice, methods stored in the world are called world methods, because they

define a message that is sent to the world. A method that affects the behavior of multiple
objects (like a scene) should be defined as a world method.

2.2 Object Methods for Object Behaviors

An alternative to the world method is the object method, which is used to define a com-
plex behavior for a single object. Where a world method usually controls the behavior of
multiple objects (for example, each character in a scene), an object method controls the
behavior of just one object — the object to which the corresponding message will be sent.

2.2.1 Example 1: Telling a Dragon to Flap Its Wings

To illustrate how to build an object method, let’s create a new story starring a dragon who
lives in the desert, as shown in Figure 2-12. Suppose that in one or more of this story’s
scenes, the dragon must flap its wings. Wing-flapping is a reasonably complex behavior,
and it would be convenient if we could send a £lapWings () message to a dragon object,

(Chapter 2. Methods 39

but class Dragon does not provide a £1apWings () method. In general, the following rule
of thumb should be used in defining methods:

: :,Metho'ds that control the behavior of a single object should be stored in that object.

From another perspective, a dragon is responsible for controlling its wings, so a
f£lapWings () message should also be sent to a dragon. To do so, the flapWings()
method must be stored in the dragon object. Conversely, it makes no sense to send the
world a flapWings () message (since it has no wings to flap), so £1apWings () should
not be defined as a world method.

Assuming that we have added a dragon to the world, we can define a dragon
method named f£lapWings () as follows. We first select dragon in the object tree, and
click the methods tab in the details area. Above the list of dragon methods, we see the
create new method button, as can be seen in Figure 2-12.

Events |create

_movo(d‘|r°cﬂ°n§) Q World.my ﬁrst metho i :
ragon!_turn(d|rocﬂ°nl, . publlc vold my_ﬂrst_methqdv() { .

FIGURE 2-12 Creafing a new class-level method

As we have seen before, clicking this button generates a dialog box asking us for the
name of the new method, in which we can type £1apWings. Alice then (1) creates a new
tabbed pane in the editing area labeled £lapWings containing an empty definition of a
f£lapwings () method, and (2) creates an entry for the new method in the details area
above the create new method button, as shown in Figure 2-13.

40

Section 2.2 Object Methods for Object Behaviors

@ dragon.flapWings

public void flapWings () {

ragon|.move(direction

{Do Nothing

ragon?.tum(direction|

FIGURE 2-13 The empty £1apwings () method

We can then fill this empty method definition with the statements needed to elicit

the desired wing-flapping behavior. Figure 2-14 shows one way we might define such

behavior, by sending rol1() messages to each of the dragon’s wings.

create new variable
|
|
i

ragon left winQ < | roII(LEFT— §, .2 revoluhons - [X fnore...?

ragon.rlght wmg =].roll(RIGHT ~ f, 0.2 revolutions = f); more...~

;EldoTogether{ & : R
i [dragon. leftwms— 5 Toll{ RIGHT -J Zrovoliions - }), more... -

R
[dragon nght wlng - I roll(LEFI' 5 I 0.2 revolutions <]); more...~

3

FIGURE 2-14 One way to define a £1apwings () method

Comments

It may take you some time to figure out why each statement that appears in Figure 2-14
is there. Puzzling out the purpose of statements consumes time that could be better
spent on other activities.

To help human readers understand why a method’s statements are there, good pro-
grammers insert comments into their methods to explain the purpose of tricky state-
ments. Comments are ignored by Alice, so you can write whatever is needed by way of
explanation.

of tl

men

men
oth
flaj

FIGL

Chapter 2 Methods 41

To add a comment to a method in Alice, click on the comment control at the bottom
of the editing area, drag the control upwards untit the green bar appears above the state-
ments you want to explain, and then drop the control, as shown in Figure 2-15.

No-comment ~ j

Together{ T I R T R e e
gon. leftwlng*}roll(RIGHT—! .2revo|u'uons—i), more...~

FIGURE 2-15 Dragging a comment

ment’s explanation, you can either double-click its text, or click its list arrow and choose
other from the menu that appears. Figure 2-16 shows a final, commented version of the

|

When you drop the comment, Alice gives it a No comment label. To edit a com- 3
|

|

|

flapWings () method. !

@ dragon.flapWings

public void flapWings () { - : c
’ : ' ' K ' create new variable

dolnOrder {

Downstroke: make both wmgs flap. DOWN togetherrj . j
EldoTogether{ .- e Sl S i
dragon. Ioftwlng -J roll(LEFT] .2 revolutjonsv !); more...< . :
:: dragon.rlghtwlng-— l.roll(RIGHT» j, 0.2 revolutionsv.[); more...~) ! !
: Upstroke make both wings flap UP together’i :)‘ dit 3
éE\doTogother{ S i i - o iy i
1 dragon. leftwlng !roll(RIGHT—l 2revolunons—]), more...~ _.-,-,:; i l ;
: gragon.rlghtwlngf!.roll(LEFT ~ }, 0.2 revolutions =1); more...~ R) ¢ i ,
g x! i
)

: o FIGURE 216 Final £1apwings () method

42 Section 2.2 Obiect Methods for Object Behaviors

Testing

To test the £lapWings () method, we switch to my_first_method() — or to a world
method that my_first _method() invokes, such as the scene method in which the
dragon flaps its wings — select dragon in the object iree, and then drag £lapWings ()
from the details area into the editing area, just as we would any other dragon method. We
then click Alice’s Play button and watch the dragon flap its wings!

As written, the method causes the dragon to flap its wings just once. If we need it to flap
more than that (for example, to fly across the sky), we can either send it the £1apWings () mes-
sage multiple times, or we can use one of Alice’s loop controls, which are discussed in Chapter 4.

It is worth mentioning that when we first wrote £1apWings (), we tried 1/4 revolution
as the initial amount for each roll () message. When we tested the method, that seemed like a
bit too much motion; so we reduced the amount to 0. 2 revolutions. Part of the “art” of Alice pro-
gramming is testing with different values until an animation is visually satisfying.

2.2.2 - Example 2: Telling a Toy Soldier to March

g Suppose we have a different story,? containing a scene in which a toy soldier is to march
5- across the screen. There is a ToySoldier class in the Alice Gallery; unfortunately, this
E class contains no march () method. So let’s build one! We can do so by defining an object
method named march () in the toySoldier.

Design

It is always a good idea to spend time designing before we start programming, especially
with a complex behavior like marching. If we think this behavior through step-by-step
(Ha, ha! Get it? Step? Marching?), we might break it down into the following algorithm:

ALGORITHM 2-1 Behavior: The ToySoldier should:

1 move forward‘ 1/4 step; simultaneously his left leg rotates forward,
his right leg rotates backward, his left arm rotates backward, his
rJ.ght arm rotates forward; : Ll

2 move forward 1/4 step, s:.multaneously his left leg rotates backward,
his right leg rotates forward, his 1eft arm rotates forward his
right arm rotates backward, e . :

3 move forward 1/4 step; s:.multaneously his right leg rotates forward,
his left leg rotates backward, his r:.ght arm rotates backward, and
his left arm rotates forward; :

4 move forward 1/4 step, s:.multaneously his right leg rotates back-
. ,ward, his left leg rotates forward, 'his right arm rotates forward,
and: h:.s left arm rotates backward:

We can figure out just how much each arm or leg needs to rotate later, when we test
the method. The thing to notice is that, because the actions within each step are occuring
simultaneously, Steps 1 and 4, and Steps 2 and 3 describe exactly the same behaviors! For

2.. Whenever we begin a new story or change to a different story, you will need to save your current world (using
File -> Save World), and then open a new world (using File -> New World).

Chapter 2 Methods 43

lack of better names, we might call Step 1 marchLeft and call Step 2 marchRight. If we
were to write methods for these two steps, then the algorithm simplifies to this:

1" marchLeft; :
2 'maréhRighi:;‘
3 marchRight;
4

marchLeft.. -

“To move the soldier forward, we send him the move () message. To make his aﬁns and legs
rotate appropriately, we send turn () messages to his subparts. After some trial-and-error to find
good move () and turn() distances, we geta deﬁrlitiqn like the one shown in Figure 2-17.

toySoldier.marchLe

pubiic vold marchieft(}{

daTogether{ 0 " e e R
toySoidier = |.move{ FORWARD-, 0.26 melers |); style = BEGIN_AND_END_ABRUPTLY - 'duratior: = 0.5 second:

gy?g_ldler‘ltﬂi.cg = ! tum{ BACKWARD ~, 02 revolutions . style = BEGIN_AND_END_ABRUPTLY * {duration =05 seconds = i more...~
oySoldier.rightleg - *_j.tum(FORWARD =, 02 revolutions — | }; style=BEGIN_AND_END, _ABRUPTLY.~ Idurbﬂéﬁ-osseconds?% more... -
7 toySoldierleftArm— | tum{ FORWARD - |, 02 revoluions ~ |); style = BEGIN_AND_END. ABRUPTLY - duration =05 saconds'=. mor...~

ghtArm = Ltum{ BACKW 2 revolutions - |); style = BEGIN_AND_END_ABRUFTLY « | duration =0.5 soconds = Imore._.~
1 o s, 555 4 g T

FIGURE 2-17 The marchLeft () method

v

The marchRight () method is similar, but with the behaviors reversed, as given in
Figure 2-18. ‘ : : . : .

@ toySoldier.marchRight

create new varlabls

public void marc

SdoTogether{,. =~~~ .~

I, 026 etars - |); style = BEGIN_AND_END_ABRUPTLY -
Log j.turn(FDR!_IARD :_],, 02 {gvoluuons =1); style= BEGIN, |_AND_END_ABRUPTLY - Iduration =05 sﬁe‘quggi j more..”
oldier.rightteg -~ | turn{ BACKWARD — 1, 0.2 revolutions = |); style = BEGIN, |_AND_END_ABRUPTLY - idumion =0.8 saconds — : more...
3); styie = BEGIN_AND_END_ABRUPTLY - :duration= 0.6 seconds ~ more...~ .
}; style = BEGIN_AND_END_ABRUPTLY ~ | duration =05 seconds ~ mors...~

FIGURE 2-18 The marchright () method

You may be wondering why in Figure 2-17 and Figure 2-18 we set each move() and
turn() message’s style attribute to BEGIN_AND_END_ABRUPTLY. The reason is that
using this style smooths out the animation and makes it less “jerky.” More precisely, by
using this style, the first sending of marchrLeft () will end abruptly, and since maxrchRight ()
begins abruptly, it will commence immediately. When it ends’ (abruptly), the second

44 Section 2.2 Object Methods for Object Behaviors

sending of marchRight () will begin without delay. And when it ends (abruptly), the sec-
ond sending of marchrLeft () will begin with no delay.

If you find that your animations are moving in a “jerky” fashion, try setting the style of
the animation’s messages to BEGIN_AND_END_ABRUPTLY.

With these two methods in place, the march () method is quite simple, as shown in
Figure 2-19.

toySoldier.march
public void march () {

‘4 marchasingle step |
doinOrder{
ySoldiermarchLeft();

FIGURE 2-19 The march () method

To test the march () method, we can send the toySoldier the march() message, either
from the scene in which it is needed or frommy_£irst_method (). Figure 2-20 shows the latter.

dolnOrder{
toySoldiermarch();
toySoldler.march (%
toySoldier.march();)
‘toySoldier.march();

FIGURE 2-20 Testing the march () method

Now, when we click Alice’s P1ay button, the soldier marches across the scene!

2

A}

Chapter 2 Methods 45

23

Alice Tip: Reusing Your Work

If you right-click on a statement, Alice displays a menu containing a make copy choice.
Selecting this choice duplicates that statement. For example, in creating the program in
Figure 2-20, we dragged toySoldier.march(); into the editing area just once, and then
used this right-click make copy mechanism to rapidly duplicate that statement three times.
This mechanism can also save time when you need to do similar, but not identical,
things in a method. For example, to build the flapwings () method shown in Figure 2-
16, we first built the top doTogether statement that makes the dragon’s wings move
down. We then made a copy of that statement, and in that copy, reversed the direction of
the roll() messages, changing LEFT to RIGHT in the first message, and RIGHT to LEFT
in the second message. This was much easier (and faster) than building the bottom
doTogether statement from scratch. ‘ :
" In the rest.of this section, we examine two other ways you can reuse existing work.

.2.3.1 Using the Clipboard

The right-click make copy mechanism is useful when you have a statement that you
want to duplicate within a particular method. But suppose you have written a statement
in one method that you want to reuse in a different method. o

For example, suppose you are programming a scene method, and producing the desired
behavior takes more statements than anticipated. Viewing the method requires you to scroll
back and forth, so you decide to break the scene up among two or more shot methods. How
can you move the statements already in your scene method into a new (empty) shot method?

The answer is the Alice clipboard, located above the events area in the upper-right
corner of the screen. From the editing area, you can drag any statement onto the clip-

board and Alice will store a copy of it there for you, as shown in Figure 2-21.

Events |create new event

worldadits, - -
first method ()

1® world.my first method g

public void my_ﬂrst_method ’ .
/ ' o - fcreate new variable

pm—— = N

2 dolnOrder) :

[itoySoldier.march();)
oySoldler.march(}; - j
oySoldiermarch{); . j
oySoldlermarch(); - .

FIGURE 2-21 Dragging a statement fo the clipboard

46 Section 2.3 Alice Tip: Reusing Your Work

If we then create a new method (that is, for a scene or shot), we can drag the state-
ment from the clipboard and drop it into that method, as shown in Figure 2-22.

public void scene1 (}{
doinOrder {~ K I

ySoldier.march(); Ji
‘toySoldier.march(}); '

ySoldier.march(}; |

‘toySoldler.march{); |

FIGURE 2-22 Dragging a statement from the clipboard

When we drag a statement from the clipboard and drop it in the editing area, Alice
copies the statement from the clipboard. That is, a statement copied to the clipboard
remains there until we replace it by dragging another statement onto the clipboard. In this
case — where we are moving a statement from one method to another — we must then
return to the first method and delete the original statement; Alice will not delete it for us.

The clipboard holds just one statement, whether it be a doInorder, a doTogether,
a message to an object, or one of the other Alice statements we will see later. If you find
yourself in a situation where you need to store multiple statements, you can tell Alice to
display more clipboards by selecting the Edit -> Preferences menu choice, selecting
the Seldom Used tab, and then increasing the number of clipboards as necessary.

The ability to copy a statement to and from the clipboard is one advantage of placing
all of a method’s statements within a doInOrder statement. If for any reason we should
later want to copy the method’s statements into another method, we can just drag the outer
doInorder statement to the clipboard and then drag it from there into the other method.
Otherwise, we would have to drag each statement to and from the clipboard individually.

2.3.2 Reusing an Object in a Different World

Writing a good object method takes time and effort. If you develop an object in one
world, you may want to reuse it in a different world. For example, if we have spent time
writing 2 method to make a dragon flap its wings — or a soldier to march, or a horse to
gallop, or whatever — and we want to reuse that same character with the same behavior
in a different world, we do not want to have to redo the work all over again.

Chapter 2 Methods 47

Thankfully, Alice lets us reuse an object in different worlds. To.do so; follow these steps:

In the world containing the original object, right-click it and rename it, choosing a
new name that describes how it differs from the old object (for example, march~
ingSoldier). ' ' '

Right-click the object again, but this time choose save object... Use the save
object dialog box to save the object to your desktop (or anywhere you can find easily).

Open the world where you want to reuse the object.

Choose File —> Import... In the dialog box that appears, navigate to your saved
object, select it, and click the Import button.

Let’s go through these steps using the dragon we modified in Section 2.2.1.

First, we give the dragon a new name by right-clicking it, choosing rename, and
then giving it a descriptive name, as shown in Figure 2-23.

vents 1create new ev

-~ When the world start

FIGURE 2-23 AR\éndmihg an object

2. We right-click again, but, as shown in- Figure 2-24, this time we choose save
object... from the menu that appears:

vents |create new eventl

' When the world starts, dt¢

FIGURE 2-24 Saving an object

48 Section 2.3 Alice Tip: Reusing Your Work

As shown in Figure 2-25, a save object dialog box appears, with which we navigate
to where we want to save the object (for example, the Desktop).

Filename; . . [RROIER R , sy

Save astype: - |AlFiles 1)]

FIGURE 2-25 Saving an object

When we click the save button, Alice saves the object in a special .a2c file (a2¢ stands
for alice-2.0-class). In our example, the file will be saved as Flappingbragon.a2c.3

3. UsingAlice’s File menu, we open the world into which we want to reuse the object.
This can be either a new world, or an existing world. We will use a new, snowy world
here.

4. With the new world open, we choose Import. .. from the File menu, as shown in
Figure 2-26.

@l Alice (2.0 04/0512005) -

FIGURE 2-26 Importing an object

3. The first letter of a class is capitalized, to help distinguish it from an object, whose first letter is lowercase.

Chapter 2 Methods 49

In the dialog box that appears, we navigate to where we saved the object (for example,
the Desktop), select the .a2c file we saved in Step 2, and click the Import button, as
shown in Figure 2-27.

FIGURE 2-27 The import dialog box

Voila! the new world contains a copy of the £1appingbragon, as shown in Figure 2-28!

Events | create new eventI

When the world starts, do

@ world.my first method |
public veid my_first_method {} {

FIGURE 2-28 A reused object

As shown in Figure 2-28, the dragon in this new world includes the flapWwings()
method. '

By saving an object from one world, and importing it into another, Alice provides us
with a means of reusing the work we invest in building object methods.

50 Sedion 2.4 Alice Tip: Using Dummies

2.4 Mice Tip: Using Dummies

As we mentioned earlier, scenes are often divided into shots, with each shot being a piece
of a scene filmed with the camera in a different position. We have also seen that Alice
places a camera object in every world. This raises the question: How do we move the
camera from one position to another position within a scene? "

Because the camera is an Alice object; any of the basic Alice messages from Appen-
dix A can be sent to it. We could thus use a set of simultaneous move (), turn(), and
other motion-related messages to shift the camera between shot methods. However, get-
ting such movements right requires lots of trial and error and gets tedious. Thankfully,
Alice provides a better way.

2.4.1 Dummies

The better way is to use a special Alice object called a dummy. A dummy is an invisible
marker in your world that has a position and an orientation. The basic idea is as follows:

1. Manually move the camera (using the controls below the world window) until it is in
the position and orientation where you want it for a given shot.

1\

Drop a dummy at the camera’s position. This dummy has the camera’s point of view.

3. Rename the dummy something descriptive (for example, the number of the scene

and shot).

4, At the beginning of the method for that shot, send the camera the setPoint0ofVview()
message, with the dummy as its target.

Let’s illustrate these steps with a new example. Suppose that we have a user story
whose second scene begins as follows:

Scene 2: The Wizard and the Trolls.

Shot 1: Wide-angle shot of a castle, with three trolls in the foreground. The leader of the
trolls says he wants to destroy the castle. The other two trolls agree. Before they can
act, a wizard materializes between them and the castle.

Shot 2: Zoom in: a half-body shot of the wizard. He cries, “YOU SHALL NOT PASSY)” .

Shot 3: Zoom out: the same wide angle shot as before. The trolls turn to the wizard ...

We can start by creating a new world, and creating empty world methods named
playScene2Shotl(), playScene2Shot2(), playScene2shot3(), and playScene2(),
with this latter method invoking the first three. We then invoke playScene2() from
my first_method(), as we did in Section 2.1. We can then add the castle, wizard,
and trolls to build the scene, as shown in Figure 2-29.

Chapter 2 -Methods 51

FIGURE 2-29 The set of “The Wizard and the Trolls”

With the Add Objects window still open, we click the more controls button, as
shown in Figure 2-30.

FIGURE 2-30 The more controls button

Among the additional controls this button exposes is the drop dummy at camera
button, as can be seen in Figure 2-31.

52 Section 2.4 Alice Tip: Using Dummies o

® single view @ quad vlew
rMave Cbjects Frs

Heiglegsel

+ {3 affect subparts

aspectratio: 4B |

lens angle: {73

FIGURE 2-31 More controls

When we click this button, Alice adds a dummy object — an invisible marker — to the
world, with the same position and orientation (point of view) as the camera. The first time we
click this button, Alice creates a new folder named Dummy Objects in the object tree, in which
all dummies are stored. If we open this folder (Figure 2-32), we can see the Dummy object inside it.

[e] Dummféijgggs)

FIGURE 2-32 A dummy object

Since the name Dummy is not very descriptive, we can right-click on the object,
select rename from the menu that appears, and rename the dummy scene2shotl, as
shown in Figure 2-33.

Chapter 2 Methods 53

1 Dummy Objects!

]scene2Shoti |

FIGURE 2-33 A renamed dummy

By doing so, we will know exactly which scene and shot this dummy is for, and not
confuse it with the dummies we create for other scenes and shots.

5 Now that we have a dummy in place for the first shot, the next step is to manually
position the camera where we want it for the second shot, using the controls beneath the
world window. Using these controls, we can zoom in until we get a nice half-body shot of
the wizard, leaving space above his head for his dialog-balloon to appear. See Figure 2-34.

54 Seciion 2.4 Alice Tip: Using Dummies -

When we have the camera just where we want it, we again press the drop dummy
at camera button to drop a second dummy at the camera’s current position. As before,
we rename it, as shown in Figure 2-35,

) sceSo

FIGURE 2-35 A second dummy

Since the third shot is back in the camera’s original position, we can reuse the
scene2Shot1 dummy for the third shot and avoid creating an additional dummy.

With dummies for all three of the shots, we then click the Add Objects window’s
DONE button and turn our attention to programming these shots.

24.2 Using setPointofview() to Control the Camera

Now that we have dummies for each of the shots, how do we make use of them? The key
is the method obj.setPoint0fView(obj2), which changes the position and orientation
of obj to that of obj2. If we send the message setPointOfView(aDummy) to the camera,
then the camera’s position and orientation will change to that of aDummy!

Back in the editing area with the playScene2shoti1 () method open, we start by
dragging a doInOrder statement into the method. We then click on the camera in the
object tree, scroll down to the setPointofView() method in the details area, and then
drag setPointOfView() to make it the first statement in the playScene2Shotl O
method. For its target, we select Dummy Objects -> scene2Shotl, as shown in
Figure 2-36.

Chapter 2 Methods 55

AL

Lo

worl. playSceneZShot

#| camiera’s details:

public void playScene2Shott () {

amera moveTo(asSeenBy.

ameré ,moveTowar&(f;rgéf', dolnOrder {

am_e_ra@moveAwayFrom(targ

asSeenBy, -

: 4arrv1e£ér_i.roﬁentTo(ééSeenBY‘ »

 camera_standUp);

g éfﬁerai.modeAtépeed(dkecti

amer.a‘.tﬁrnAtS';;éea(&Irecﬁo é &
T S R scene2Shot2 ;.-

; amergq‘.rdllAESpeed(dlyecjﬁqd

FIGURE 2-36 Setting the camera’s point of view to a dummy

When we have chosen scene2shot1 as its target, we then set the statement’s duration
to zero (so that the camera moves to this position and orientation instantly). We can then
add the rest of the statements for the shot, resulting in a method definition like that
shown in Figure 2-37.

5 iy tistind @ world.playScene2Shot1 %

public void playScene2Shot1 (} {
create new variable

{troli2.head - '.say(i'
d - .say{ YEA

FIGURE 2-37 Using the setPointofview() method with a dummy

We then use the same approach in playScene2shot2() to move the camera to
the position and orientation of the scene2Shot2 dummy near the start of that method
(Figure 2-38). ‘ '

56 Section 2.4 Alice Tip: Using Dummies

@ world.playScene2Shot2}

public void playScene2Shot2 () { ,

wizard materializes to defend castle ~ } \ i

wizard - .set{ opacity, 1 (100%) = |); more...~ i

wizard.upperBody.neck.head - |.say{ YOU SHALL NOT PASS!~ | }; duration =2 seconds ~ TfontSize =30 < Imore...~

i

;

i

i

camera ~ | setPointOfview(scene2Shot2 < |); more...~ J i
1]

|

}

2.5

FIGURE 2-38 The playScene2shot2 () method

By default, the duration of the setPointofview() method is 1 second, so the
camera will take a full second to zoom in from the wide angle shot to the half-body shot
of the wizard. If we want a faster zoom, we can reduce the duration (for example, O sec-
onds causes an instantaneous cut). If we want a slower zoom, we can set the duration
to 2 or more seconds.

Note also that to make the wizard materialize, the playScene2shot2() method
sets his opacity property to 1, using the approach described in Section 1.5.1. To make
him initially invisible, we manually set his opacity to 0 in the properties pane.

For the third shot, we use the setPointOfView() message to reset the camera’s
position and orientation back to the wide-angle shot, using the scene2shotl dummy.
Figure 2-39 shows the code at this point.

DR oA s B e

. 7 @ world.playScene2Shot3 &
public void playScene2shot3 () {
- | [t v o

dolnOrder {
/' The trolls turn towards the wizard... = i

camera ~ f.setPolntOfVlew(scene2Shot1 — 1 }); more...™

SdoTogether{-
oll:j.polntAt(wizard <); onlyAffectYaw =true

FIGURE 2-39 The playScene2shot3 () method

Chapter 2 Methods 57

2.5

Now, when we click the Play button, we see the first shot from the wide angle view
and see the trolls speak. The camera then zooms in to the half-body view of the wizard,
and we see his dialog. The camera then zooms back out to the wide-angle view, and the
trolls turn toward the wizard.... What happens next? It's up to you! (See the Chapter 3
problems for one possibility.)

You may have noticed that when we used the pointat () message to make the trolls
turn to the wizard, we set that message's onlyAffect¥aw attribute to true. Every object
in a 3D world has six attributes that determine its position and orientation in the world.
Yaw is one of these six attributes, which we examine in the next section.

Thinking in 3D

Most of us are not used to thinking carefully about moving about in a three-
dimensional world, any more than we think carefully about grammar rules when we
speak our native language. However, to use Alice well and understand the effects of
some of its methods, we need to conclude this chapter by thinking about how objects
move in a 3D world.

Every object in a 3D world has the following two properties:

» An object’s position determines its location within the 3D world.

s An object’s orientation determines the way it is facing in the 3D world, determining
what is in front of and behind the object, what is to the left and right of the object,
and what is above and below the object.

In the rest of this section, we will explore these two properties in detail.

2.5.1 An Object’s Position

Pretend that you are a pilot flying the seaplane in Figure 2-40.

FIGURE 2-40 A seaplane

As you fly the seaplane, it can move along any of the arrows shown in Figure 2-41.

58 Section 2.5 Thinking in 3D -

FIGURE 2-41 The seaplane and 3D axes

Each pair of opposite-facing arrows (from the pilot's perspective: LEFT-RIGHT
[red], UP-DOWN [green], FORWARD-BACKWARD {blue}) is called an axis. Two or
more of these arrows are called axes.

Every Alice object has its own three axes. For example, from a “downward-looking” angle,
we might imagine the three axes of our three-dimensional world as shown in Figure 2-42.

up A 3D World
BACKWARD
LEFT
RIGHT FORWARD :
DOWN 1

FIGURE 2-42 The three-dimensional world

Once we create a world and start adding objects to it, every object is located somewhere
within that 3D world. To determine each object’s exact location, we can use the world’s axes.

To illustrate, the seaplane’s position along the world’s LEFT-RIGHT axis specifies its
location in the world’s width dimension. We will call this axis the LR axis. ’

Similarly, the seaplane’s position along the world’s UP-DOWN axis specifies its loca-
tion in the world’s height dimension. We will call this axis the UD axis.

Finally, the seaplane’s position along the world's FORWARD-BACKWARD axis spec-
ifies its location in the world’s depth dimension. We will call this axis the FB axis.

An object’s position within a three-dimensional world thus consists of three
values — Ir, ud, and fb — that specify its location measured using the world’s three axes.*

4, These axes are usually called the X, Y, and Z axes, but we’ll use the more descriptive LR, UD, and FB.

Chapter 2 Methods 59

Changing Position

To change an object’s position, Alice provides a method named move () (see Appendix A).
When we drop Alice’s move () method into the editing area, Alice displays a menu of the
directions the object may move, shown in Figure 2-43.

FIGURE 2-43 The directions an object may move

If you compare Figure 2-41 and Figure 2-43, you'll see that Alice’s move () message
allows an object to move along any of that object’s three axes:

* Moving LEFT or RIGHT changes the object’s location along its LR-axis.
® Moving UP or DOWN changes the object’s location along its UD-axis.
® Moving FORWARD or BACKWARD changes its location along its FB-axis.

Alice’s move () message thus changes the position of the object to which the mes-
sage is sent with respect to the world’s axes, but the directional values that we specify for
the movement (LEFT, RIGHT, UP, DOWN, FORWARD, and BACKWARD) are given with respect to
that object’s axes, not the world’s axes.

2.5.2 An Object's Orientation

When an object moves, its axes move with it. For example, if we send the seaplane of Figure 2-41
the message turn (RIGHT, 0.25), the picture would change to that shown in Figure 2-44.

FIGURE 2-44 The seaplane furned 1/4 revolution right

60 Section 2.5 Thinking in 3D

If we now send the turned seaplane a message to move (FORWARD, ...), the sea-
plane will move forward according to the new direction its FB axis points.

Yaw

If you compare the axes in Figure 2-41 and Figure 2-44 carefully, you'll see that a
turn(RIGHT, 0.25) message causes the seaplane to rotate about its UD-axis. A
turn(LEFT, 0.25) message causes a rotation about the same axis, but in the opposite
direction. If we were to position ourselves “above” the plane’s UD-axis and look down, we
might visualize the effects of such turn() messages as shown in Figure 2-45.

turn(LEFT,0.25) [turn(RIGHT,0.25)

FIGURE 2-45 Changing yaw: turning left or right

In 3D terminology, an object’s yaw is how much it has rotated about its UD axis
from its original position. For example, when you shake your head “no,” you are changing
your head’s yaw. Alice’s turn (LEFT, ...) and turn(RIGHT, ...) messages change an
object’s yaw.

Pitch

We just saw that an object’s yaw changes when it rotates around its UD axis. Since an
object has three axes, it should be evident that we could also rotate an object around one
of its other two axes. For example, if we wanted the seaplane to dive toward the sea, we
could send it a turn (FORWARD, ...) message; if we wanted it to climb toward the sun,
we could send it a turn(BACKWARD, ...) message. These messages cause an object to
rotate about its LR-axis, as shown in Figure 2-46.

Chapter 2 Methods 61

turn (FORWARD, 0.25) _ turn (BACKWARD, 0.25)

FIGURE 2-46 Turning forward or backward

An object’s pitch is how much it has rotated about its LR axis from its original posi-
tion. For example, when you shake your head “yes,” you change your head’s pitch. In Alice,
a turn (FORWARD, ...) or turn(BACKWARD, ...) message changes an object’s pitch.

Roll

An object can also rotate around its FB axis. For example, if we were to send the seaplane
the roll(LEFT, 0.25) or roll(RIGHT, 0.25) message, it would rotate as shown in
Figure 2-47.

roll (RIGHT,0.25 roll (LEFT,0.25)

R ot

FIGURE 2-47 Rolling left or right

62 Section 2.6 Chapter Summary

The amount by which an object has rotated about its FB axis (compared to its origi-
nal position) is called the object’s roll. In Alice, the rol1(LEFT, ...) and roll (RIGHT,
...) messages change an object’s roll.

An object’s orientation is its combined yaw, pitch, and roll.

Just as an object’s position has three parts: Ir, ud, and fb; an object’s orientation has
three parts: yaw, pitch, and roll. An object’s position determines where in the world that
object is located,; its orientation determines the direction the object is facing.

Back in Figure 2-39, we sent three trolls the pointat () message. By default, a mes-
sage obj .pointAt (obj2) ; causes obj to rotate so that its FB axis is pointing at the center]
of obj2. Unless obj is already pointing at obj2, this rotation will change the yaw of obj. Pr
However, if obj is much taller (or shorter) than ob3j2, then the center of obj2 will be :
much lower (or higher) than that of obj, so the pointAt () message will also change
obj’s pitch. This would cause the trolls to lean forward at an unnatural angle. By setting
the message’s onlyAffectYaw attribute to true, we ensured that each troll's pitch
remained unchanged.

The message obj.turnToFace(obj2); is a shorthand for obj.pointAt (obj2)
with onlyAffectYaw=txrue, and we will use it in future examples.

2.5.3 Point of View

In Alice, an object’s combined position and orientation are called that object’s point of
view. An object’s point of view thus consists of six values: [(Ir, ud, fb), (yaw, pitch, rolb)].
Alice’s move (), turn(), and roll() messages let you change any of these six values for
an object, giving Alice objects six degrees of freedom.> Alice’s setPointOfView() mes-
sage (see Appendix A) lets you set an object’s point of view.

2.6 Chapter Summary

QO World-level methods let us divide an Alice program into scenes and shots.

1 The divide-and-conquer approach can simplify problem solving.

[Object-level methods let us define new behaviors for an object.

0 We can reuse a class-level method in a world other than the one where we defined it.
[0 Control camera movement using dummies and the setPointO£View() message.

@ In a 3D world, an object’s position determines where the object is located in the
world; its orientation is the object’s combined pitch, roll, and yaw; and its point of
view is its combined position and orientation.

5. The phrase “six degrees of separation” — which claims any two living people are connected by a chain of six or
fewer acquaintances — is derived from this phrase “six degrees of freedom.” The “Six Degrees of Kevin Bacon”
game — that claims that the actor Kevin Bacon and any other actor are linked by a chain of six or fewer film
co-stars — is further derived from “six degrees of separation.” See www.cs.virginia.edu/oracle/.

Chapter 2 Methods 63

2.6.1 Key Terms

axis

comment

divide and conquer
dummy

object method
orientation

pitch

point of view

position

reusable method
roll

scene

shot

world method
yaw

Programming Projects

2.1

2.2

2.3

2.4

2.5

2.6

Revisit the programs you wrote for Chapter 1. If any of them require scrolling to
view all of their statements, rewrite them using divide-and-conquer and world-level
methods whose statements can be viewed without scrolling.

The director Sergio Leone was famous for the extreme closeups he used of gunfight-
ers’ eyes in “western” movies like For a Fistful of Dollars; The Good, the Bad, and the
Ugly; and Once Upon a Time in the West. Watch one of these films; then modify the
playScene2() method we wrote in Section 2.4, using Leone’s camera techniques to
heighten the drama of the wizard’s confrontation with the trolls.

Build an undersea world containing a goldfish. Build a swim() method for the
goldfish that makes it swim forward one meter in a realistic fashion. Add a shark
to your world, and build a similar swim() method for it. Build a program containing
a scene in which the shark chases the goldfish, and the goldfish swims to its
giant cousin goldfish that chases the shark away. (Hint: Make the giant cousin gold-
fish by Saving and Importing your modified gold£ish.)

Choose a hopping animal from the Alice Gallery (for example, a frog, a bunny, etc.).
Wirite a hop() method that makes it hop in a realistic fashion. Add a building to your
world, then write a program that uses your hop() method to make the animal hop
around the building. Write your program using divide-and-conquer so that
my_first_method() contains an Inorder control and no more than four statements.

Build a world containing a flying vehicle (for example, a biplane, a helicopter, etc.).
Build a class-level LoopbeeLoop () method for your flying vehicle that makes it move
in a vertical loop. Using the Torus class (under Shapes), build a world containing a
giant arch. Then write a program in which your flying vehicle does a LoopDeeLoop ()
through the arch.

Boom, Boom, Ain't It Great To Be Crazy is a silly song with the lyrics on the next
page. Create an Alice program containing a character who sings this song. Use
divide-and-conquer to write your program as efficiently as possible.

64 Section 2.6 Chapter Summary
A horse and a flea and three blind mice Way down south where bananas grow,
sat on a curbstone shooting dice. a flea stepped on an elephant’s toe.
The horse he slipped and fell on the flea. The elephant cried, with fears in his eyes,
“Whoops,” said the flea, “there’s a horse on me.” “Why don’t you pick on someone your size.”
Boom, boom, ain’t it great to be crazy? Boom, boom, ain't it great fo be crazy?
Boom, boom, ain't it great to be crazy? Boom, boom, ain't it great fo be crazy?
Giddy and foolish, the whole day through, Giddy and foolish, the whole day through,
boom, boom, ain't it great to be crazy? boom, boom, ain’t it great fo be crazy?
Way up north where there’s ice and snow,
there lived a penguin whose name was Joe.
He got so tired of black and white,
he wore pink pants fo the dance last night.
Boom, boom, ain't it great to be crazy?
Boom, boom, ain't it great fo be crazy?
Giddy and foolish, the whole day through,
boom, boom, ain't it great fo be crazy?
2.7 Using appropriately colored shapes from the Alice Gallery, build a checker-board.

2.8

2.9

2.10

Then choose an object from the Gallery to serve as a checker. Build class-level
methods named moveLeft (), moveRight (), jumpLeft(), and jumpRight() for
the character. Then make copies of the object for the remaining checkers. Build a
program that simulates the opening moves of a game of checkers, using your board
and checkers.

Using the heBuilder or sheBuilder (or any of the other persons with enough
detail in the Alice Gallery), build a person and add him or her to your world. Using
your person, build an aerobic exercise video in which the person leads the user
through an exercise routine. Use world- and/or class-level methods in your program,
as appropriate.

In Section 2.4, we developed a program consisting of Scene 2, in which a wizard

faces off against three trolls. Create your own Scene 1 and Scene 3 for this program
to show what happened before and after the scene we developed.

Write an original story consisting of at least two characters, three scenes, and dum-
mies to position your characters in the different scenes. Each scene should have
multiple shots. Use world- and class-level methods to create your story efficiently.

[y |

[I o T Y B Y D I Y N Y o B o §

