		*	
Name:	Vor		Date:
	, ()		

2.3 - 2.8 Review

2.3 - Conditional Statements

For #6 and 7, identify the hypothesis and conclusion of each conditional statement.

- 1) If 4x 6 = 10, then x = 4.
- 2) An angle with a measure more than 90 is an obtuse angle.
- 3) Laura is waiting to board an airplane. Over the speakers she hears a flight attendant say, "If you are seated in rows 10 to 20, you may now board." What are the inverse, converse, and the contrapositive of this statement?

Converse: If you board now, then you are seated in rows 10 to 20.

Inverse: If you are not seated in rows 10 to 20, then you may not board.

Contrapositive! If you may not board, then you are not seated in rows 10 to 20.

2.5 - Postulates

For #11-13, determine whether each statement is always, sometimes, or never true.

4) Three collinear points determine a plane.

Never

5) Two points A and B determine a line.

Always

6) A plane contains at least three lines.

Sometimes

2.6 – Algebraic Proofs

Know the following properties:

- Addition Property
- Subtraction Property
- Multiplication Property
- Division Property
- Reflexive Property
- Symmetric Property
- Transitive Property
- Distributive Property
- Substitution Property

For #14-23, identify the property.

- 7) If a = b, then a c = b c. subtraction
- 8) If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$. Division
- 9) If a = b and b = a. Symmetric
- 10) If a = b, then a may be replaced by b in any equation or expression. Substitution
- 11) If A, B, and C are collinear, then point B is between A and C if and only if AB + BC = AC. Seg. Add.
- 12) If a = b, then a + c = b + c. Addition
- 13) If a = b, then $a \cdot c = b \cdot c$. Multiplication
- Reflexive 14) a = a
- 15) If a = b and b = c, then a = c. Transitive
- 16) a(b+c) = ab + ac. Distributive
- 17) Write a two-column proof for the following conjecture.

Given:
$$\frac{12x-8}{4} = 4$$

Prove: $x = 2$

$$\frac{S}{\sqrt{1 + \frac{12x - 8}{4}}} = 4 \quad \text{ Given}$$

2.7 - Proving Segment Relationships

• Know the Segment Addition Postulate and how to solve proofs using this postulate.

2.8 - Proving Angle Relationships

- Know the Angle Addition Postulate
- Know the Supplement Theorem
- Know the Complement Theorem
- Know the Congruent Supplements Theorem
- Know the Congruent Complements Theorem
- Know the Vertical Angles Theorem
- Know the Right Angles Theorem

Sample Proof Questions for Sections 2.7 and 2.8

Complete the following proofs.

25) Given:
$$m \angle 1 = m \angle 3$$
; $m \angle 2 = m \angle 4$.

Prove: $m \angle ABC = m \angle DEF$

26) Given:
$$ST = RN$$
; $IT = RU$.

Prove: SI = UN

 $\angle 2$ and $\angle 3$ are supplementary.

Prove: $\angle 1 \cong \angle 3$

For #28-31, refer to the diagram on the right.

28) Given:
$$m \angle 1 = m \angle 2$$
; $m \angle 3 = m \angle 4$.

Prove: $m \angle SRT = m \angle STR$

31) Given:
$$m \angle SRT = m \angle STR$$
; $m \angle 3 = m \angle 4$
Prove: $m \angle 1 = m \angle 2$

(1) m<1= m<3 m<2= m<4 (2) m<1+m<2=n<3+ m<4 (3) And thoi m<4 (3) Angle Add m/3+m<4= < DEF (4) <abc (2)="" (3)="" (5)="" 21.="" <="" =="" add="" def="" given="" rn="RUHUN" s="" seg.="" st="RN" subst.<="" substitution="" th=""><th></th></abc>	
21. S P. (2) m<1+m<2=m<3+ m<4 (3) Analyte Adel. (4) <abc (1)="" (2)="" (5)="" +="" 21.="" <="" =="" add.="" def="" p.="" rn="RU" s="" seg.="" st="RN" subshtution="" th="" un<=""><th></th></abc>	
3 mc1+mc2= <abc (1)="" (2)="" +="" 2l.="" 3="" 4="" <abc="<DEF" add.="" addl.="" arrayle="" given="" it="" mc3+mc4="<DEF" p.="" rn="RU+UN</th" s="" seg.="" st="SI" substitution=""><th></th></abc>	
3 mc1+mc2= <abc (1)="" (2)="" +="" 2l.="" 3="" 4="" <abc="<DEF" add.="" addl.="" arrayle="" given="" it="" mc3+mc4="<DEF" p.="" rn="RU+UN</th" s="" seg.="" st="SI" substitution=""><th></th></abc>	
MC3+MC4= <def (4)="" (5)="" (7)="" (8)="" +="" 26.="" <abc="<" add.="" def="" given="" rn="RU" s="" seg.="" st="RN" substitution="" th="" un<=""><th></th></def>	
MC3+MC4= <def (2)="" (3)="" (4)="" (5)="" (6)="" +="" 21.="" 5="" <abc="<" add.="" def="" it="" rn="RU" seg.="" st="SI" substitution="" th="" un<=""><th>handanian or d</th></def>	handanian or d
26. 5 P. (i) ST = RN (i) Given (ii) ST = SI + IT (ii) Seg. Add. RN = RU + UN	
(1) ST = RN (1) GIVEN (2) ST = SI + IT (2) Seg. Add. RN = RU+UN	
(1) ST = RN (1) GIVEN (2) ST = SI + IT (2) Seg. Add. RN = RU+UN	
(1) ST = RN (1) GIVEN (2) ST = SI + IT (2) Seg. Add. RN = RU+UN	
(2) ST=SI+IT (2) Seg. Add. RN=RU+UN	
RN= RU+UN	-
3 SI+IT= RU+UN 3 Subst.	
	-
(4) IT = RU (4) Given	
(5) SI = UN (5) Subtraction	
27. S R	
O <12<2 form (D) Given	
a linear pair	
(2) <1+42=180 (2) defof linear pair	
3 42 e/ <3 are supp 3 Given	
(4) ∠2+∠3 =180 (4) def of suppr ≥5	
(5) <1+<2 =<2+<3 (5) Subst. (6) <2°2<2 (6) Retlex.	
(1) 2/3 (1) Subtr.	