
Hardware and software work

together in a computer system

to accomplish complex tasks.

Furthermore, computer net-

works have changed how

computers are used, and

they now play a key role in

even basic software develop-

ment. This chapter explores a

broad range of computing

issues, laying the foundation

for the study of software

development.

◗ Describe the relationship between
hardware and software.

◗ Define various types of software
and how they are used.

◗ Identify basic computer hardware
and explain what it does.

◗ Explain how the hardware compo-
nents execute programs and man-
age data.

◗ Describe how computers are con-
nected together into networks to
share information.

◗ Explain the importance of the
Internet and the World Wide Web.

◗ Introduce the Java programming
language.

◗ Describe the steps involved in pro-
gram compilation and execution.

◗ Introduce graphics and their
representations.

chapter
objectives

This book is about writing well-designed
software. To understand software, we must
first understand its role in a computer system.

1
computer

systems

ch01.qxp 3/13/06 1:50 PM Page 1

2 CHAPTER 1 computer systems

1.0 introduction
We begin our exploration of computer systems with an overview of com-
puter processing, defining some basic terminology and showing how the key
pieces of a computer system work together.

basic computer processing
A computer system is made up of hardware and software. The hardware
components of a computer system are the physical pieces. They include
chips, boxes, wires, keyboards, speakers, disks, cables, plugs, printers, mice,

monitors, and so on. If you can physically touch it and it can be con-
sidered part of a computer system, then it is computer hardware.

The hardware components of a computer are useless without
instructions to tell them what to do. A program is a series of instruc-
tions that the hardware executes one after another. Software includes

programs and the data those programs use. Together hardware and software
form a tool that we can use to solve problems.

The key hardware components in a computer system are:

◗ central processing unit (CPU)

◗ input/output (I/O) devices

◗ main memory

◗ secondary memory devices

Each of these hardware components is described in detail in the next sec-
tion. For now, let’s simply examine their basic roles. The central processing
unit (CPU) is the device that executes the individual commands of a pro-
gram. Input/output (I/O) devices, such as the keyboard, mouse, and monitor,
allow a person to interact with the computer.

Programs and data are held in storage devices called memory, which fall
into two categories: main memory and secondary memory. Main memory
holds the software while it is being processed by the CPU. Secondary mem-
ory stores software more or less forever—until it is deliberately erased. The
most important secondary memory device of a typical computer system is the
hard disk, which is inside the main computer box. A floppy disk is like a
hard disk, but it cannot store nearly as much information as a hard disk.
Floppy disks are portable. That is, they can be removed or moved from com-
puter to computer as needed. Other portable secondary memory devices
include zip disks and compact discs (CDs).

A computer system consists of
hardware and software that
work together to help us solve
problems.

ke
y

co
nc

ep
t

*AP and Advanced Placement Program are registered trademarks of The College Board,
which was not involved in the production of, and does not endorse, this product.

ch01.qxp 3/16/06 2:26 PM Page 2

1.0 introduction 3

Figure 1.1 shows how information moves among the basic hard-
ware parts of a computer. Suppose you have a program you wish to
run. The program is stored on some secondary memory device, such
as a hard disk. When you tell the computer to execute your program,
a copy of the program is brought in from secondary memory and
stored in main memory. The CPU reads the program instructions
from main memory. The CPU then executes the instructions one at a
time until the program ends. The data that the instructions use, such
as two numbers that will be added together, are also stored in main memory.
They are either brought in from secondary memory or read from an input
device such as the keyboard. During execution, the program may display
information to an output device such as a monitor.

The process of executing a program is basic to the operation of a com-
puter. All computer systems work in about the same way.

software categories
There are many types of software. At this point we will simply look at sys-
tem programs and application programs.

The operating system is the main software of a computer. It does
two things. First, it provides a user interface that allows the user to
interact with the machine: to click on an icon, for example, or delete
a file. Second, the operating system manages computer resources
such as the CPU and main memory. It decides when programs can run,
where they are loaded into memory, and how hardware devices communi-
cate. It is the operating system’s job to make the computer easy to use and
to keep it running well.

To execute a program, the
computer first copies the
program from secondary
memory to main memory. The
CPU then reads the program
instructions from main
memory, executing them one at
a time until the program ends.

key
concept

figure 1.1 A simplified view of a computer system

Hard disk

Keyboard

Main�
memory

MonitorFloppy disk

F

CPU

The operating system provides
a user interface and manages
computer resources.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 3

4 CHAPTER 1 computer systems

Several popular operating systems are in use today. Windows 98,
Windows NT, Windows 2000, and Windows XP are versions of the operat-
ing system developed by Microsoft for personal computers. Versions of the
Unix operating system are also quite popular, such as Linux. Mac OS is the
operating system used on Apple computers.

An application is just about any software other than the operating system.
Word processors, missile control systems, database managers, Web browsers,
and games are all application programs. Each application program has its
own user interface that allows the user to interact with that particular pro-
gram.

The user interface for most modern operating systems and applications is
a graphical user interface (GUI), which uses graphical screen elements. These
elements include:

◗ windows, which are used to separate the screen into distinct work
areas

◗ icons, which are small images that represent computer resources, such
as a file

◗ pull-down menus, which give the user a list of options

◗ scroll bars, which let the user move up and down in a window

◗ buttons, which can be “pushed” with a mouse click

The mouse is the primary input device used with GUIs, so GUIs are some-
times called point-and-click interfaces. The screen shot in Figure 1.2 shows
an example of a GUI.

The interface to an application or operating system is an important part
of the software because it is the only part of the program the user directly
interacts with. To the user, the interface is the program.

The focus of this book is high-quality application programs. We
explore how to design and write software that will perform calcula-
tions, make decisions, and control graphics. We use the Java pro-
gramming language throughout the text to demonstrate computing
concepts.

digital computers
Two techniques are used to store and manage information: analog and digi-
tal. Analog information is continuous. For example, a thermometer is an
analog device for measuring temperature. The mercury rises in a tube at the
same time the temperature outside the tube rises. Another example of analog

As far as the user is concerned,
the interface is the program.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 4

1.0 introduction 5

information is the speed at which a car is going. As you press and release the
gas and brake pedals, the car’s speed varies. Figure 1.3 graphically depicts a
car’s speed as it varies over time.

Digital technology breaks information into pieces and shows those pieces
as numbers. The music on a compact disc is stored digitally, as a series of
numbers. Each number represents the voltage level of one specific instance
of the recording. Many of these measurements are taken in a short period

figure 1.2 An example of a graphical user interface (GUI) (Palm Desktop™
courtesy of 3COM Corporation)

figure 1.3 A car’s speed as it changes over time

60 mph

0 mph

time

ch01.qxp 3/13/06 1:50 PM Page 5

6 CHAPTER 1 computer systems

of time, perhaps 40,000 measurements every second. The number of meas-
urements per second is called the sampling rate. If samples are taken often
enough, the separate voltage measurements can be used to create an analog
signal that is “close enough” to the original. In most cases, the reproduction
is good enough to satisfy the human ear.

Figure 1.4 shows the sampling of an analog signal. When analog
information is converted to a digital format by breaking it into pieces,
we say it has been digitized. Because the changes that occur in a sig-
nal between samples are lost, the sampling rate must be fast enough
to make up the difference.

Sampling is only one way to digitize information. For example, a sentence
can be stored on a computer as a series of numbers, where each number rep-
resents a single character in the sentence. Every letter, digit, and punctuation
mark has been given a number. Even the space character gets a number.
Consider the following sentence:

Hi, Heather.

The characters of the sentence are represented as a series of 12 numbers, as
shown in Figure 1.5. When a character is repeated, such as the uppercase
'H', the same number is used. Note that the uppercase version of a letter is
stored as a different number from the lowercase version, such as the 'H' and
'h' in the word Heather. They are considered different characters.

figure 1.4 Digitizing an analog signal by sampling

Information can be lost

between samples

Analog signal

Sampling process

Sampled values

F

12 11 39 40 7�

14 47

Digital computers store
information by breaking it into
pieces and representing each
piece as a number.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 6

1.0 introduction 7

Modern computers are digital. Every kind of information, including text,
images, numbers, audio, video, and even program instructions, is broken
into pieces. Each piece is represented as a number. The information is stored
by storing those numbers.

binary numbers
A digital computer stores information as numbers, but those numbers are
not stored as decimal numbers. All information in a computer is stored and
managed as binary numbers. Unlike the decimal system, which has 10 digits
(0 through 9), the binary number system has only two digits (0 and 1). A sin-
gle binary digit is called a bit.

All number systems work according to the same rules. The base value of
a number system tells us how many digits we have to work with and what is
the place value of each digit in a number. The decimal number system is base
10, whereas the binary number system is base 2.

Modern computers use binary numbers because the devices that
store and move information are less expensive and more reliable if
they have to represent only one of two possible values. Other than
this, there is nothing special about the binary number system. Some
computers use other number systems to store information, but they
aren’t as convenient.

Some computer memory devices, such as hard drives, are magnetic.
Magnetic material can be polarized easily to one extreme or the other, but
in-between levels are hard to tell apart. So magnetic devices can be used to
represent binary values very well—a magnetized area represents a binary 1
and a demagnetized area represents a binary 0. Other computer memory
devices are made up of tiny electrical circuits. These devices are easier to cre-
ate and are less likely to fail if they have to switch between only two states.
We’re better off making millions of these simple devices than creating fewer,
more complicated ones.

figure 1.5 Text is stored by mapping each character to a number

72 105 44 32 72 101 97 104 114116 101 46

H i , H e a t h e r .

Binary values are used to store
all information in a computer
because the devices that use
binary information are
inexpensive and reliable.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 7

8 CHAPTER 1 computer systems

Binary values and digital electronic signals go hand in hand. They improve
our ability to send information reliably along a wire. As we’ve seen, an ana-
log signal has continuously varying voltage, but a digital signal is discrete,
which means the voltage changes dramatically between one extreme (such as
+5 volts) and the other (such as –5 volts). At any point, the voltage of a dig-
ital signal is considered to be either “high,” which represents a binary 1, or
“low,” which represents a binary 0. Figure 1.6 compares these two types of
signals.

As a signal moves down a wire, it gets weaker. That is, the voltage levels
of the original signal change slightly. The trouble with an analog signal is
that as it changes, it loses its original information. Since the information is
directly analogous to the signal, any change in the signal changes the infor-
mation. The changes in an analog signal cannot be recovered because the
new, degraded signal is just as valid as the original. A digital signal degrades
just as an analog signal does, but because the digital signal is originally at
one of two extremes, it can be reinforced before any information is lost. The
voltage may change slightly from its original value, but it still can be inter-
preted as either high or low.

The number of bits we use in any given situation determines how many
items we can represent. A single bit has two possible values, 0 and 1, so it
can represent two items or situations. If we want to represent the state of a
lightbulb (off or on), one bit will suffice, because we can interpret 0 as the
lightbulb being off and 1 as the lightbulb being on. If we want to represent
more than two things, we need more than one bit.

Two bits, taken together, can represent four items because there are
exactly four ways we can arrange two bits: 00, 01, 10, and 11. Suppose we
want to represent the gear that a car is in (park, drive, reverse, or neutral).
We would need only two bits, and could set up a mapping between the bits
and the gears. For instance, we could say that 00 represents park, 01 repre-
sents drive, 10 represents reverse, and 11 represents neutral. (Remember that

figure 1.6 An analog signal and a digital signal

Analog signal Digital signal

F

ch01.qxp 3/13/06 1:50 PM Page 8

1.0 introduction 9

‘10’ is not ‘ten’ but ‘one-zero’ and ‘11’ is not ‘eleven’ but ‘one-one.’) In this
case, it wouldn’t matter if we switched that mapping around, though in some
cases the relationships between the bit arrangements and what they
represent is important.

Three bits can represent eight unique items, because there are eight
arrangements of three bits. Similarly, four bits can represent 16 items,
five bits can represent 32 items, and so on. Figure 1.7 shows the
relationship between the number of bits used and the number of items they
can represent. In general, N bits can represent 2N unique items. For every bit
added, the number of items that can be represented doubles.

We’ve seen how a sentence of text is stored on a computer as numeric val-
ues. Those numeric values are stored as binary numbers. Suppose we had
character strings in a language with 256 characters and symbols. We would
need to use eight bits to store each character because there are 256 unique
ways of arranging eight bits (28 equals 256). Each arrangement of bits is a
specific character.

Ultimately, representing information on a computer boils down to the
number of items and how those items are mapped to binary values.

There are exactly 2N ways to
arrange N bits. Therefore N bits
can represent up to 2N unique
items.

key
concept

figure 1.7 The number of bits used determines the number of items
that can be represented

0000�

0001�

0010�

0011�

0100�

0101�

0110�

0111�

1000�

1001�

1010�

1011�

1100�

1101�

1110�

1111

00000�

00001�

00010�

00011�

00100�

00101�

00110�

00111�

01000�

01001�

01010�

01011�

01100�

01101�

01110�

01111

10000�

10001�

10010�

10011�

10100�

10101�

10110�

10111�

11000�

11001�

11010�

11011�

11100�

11101�

11110�

11111

1 bit 2 bits 3 bits 4 bits
2 items 4 items 8 items 16 items

5 bits
32 items

000�

001�

010�

011�

100�

101�

110�

111

00�

01�

10�

11

0

1

ch01.qxp 3/13/06 1:50 PM Page 9

10 CHAPTER 1 computer systems

1.1 hardware components
Let’s look at the hardware components of a computer system in more detail.
Consider the computer described in Figure 1.8. What does it all mean? Can
the system run the software you want it to? How does it compare to other
systems? These terms are explained in this section.

computer architecture
The architecture of a house describes its structure. Similarly, we use the term
computer architecture to describe how the hardware components of a com-
puter are put together. Figure 1.9 shows the basic architecture of a computer
system. Information travels between components across a group of wires
called a bus.

The CPU and the main memory make up the core of a computer. As we
mentioned earlier, main memory stores programs and data that are being
used, and the CPU executes program instructions one at a time.

Suppose we have a program that figures out the average of a list of
numbers. The program and the numbers must be in main memory
while the program runs. The CPU reads one program instruction from
main memory and executes it. When it needs data, such as a number
in the list, the CPU reads that information as well. This process repeats
until the program ends. The answer is stored in main memory to await
further processing or in long-term storage in secondary memory.

Almost all devices in a computer system other than the CPU and main
memory are called peripherals. Peripherals operate at the periphery, or outer

■ 2.8 GHz Intel Pentium 4 processor

■ 512 MB RAM

■ 80 GB Hard Drive

■ 48x CD-RW / DVD-ROM Combo Drive

■ 17" Flat Screen Video Display with

 1280 x 1024 resolution

■ 56 Kb/s Modem

figure 1.8 The hardware specification of a particular computer

The core of a computer is
made up of the CPU and the
main memory. Main memory is
used to store programs and
data. The CPU executes a
program’s instructions one at
a time.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 10

1.1 hardware components 11

edges, of the system (although they may be in the same box). Users don’t
interact directly with the CPU or main memory. Instead users interact with
the peripherals: the monitor, keyboard, disk drives, and so on. The CPU and
main memory would not be useful without peripheral devices.

Controllers are devices that send information back and forth from the
CPU and main memory to the peripherals. Every device has its own way of
formatting and sending data, and part of the controller’s job is to handle this.
Furthermore, the controller often sends information back and forth, so the
CPU can focus on other activities.

Input/output (I/O) devices and secondary memory devices are one kind of
peripherals. Another kind of peripherals are data transfer devices, which
allow information to be sent and received between computers. The computer
described in Figure 1.8 has a data transfer device called a modem, which lets
information be sent across a telephone line. The modem in the example can
send data at a maximum rate of 56 kilobits (Kb) per second, or approxi-
mately 56,000 bits per second (bps).

Secondary memory devices and data transfer devices can be thought of as
I/O devices because they represent a source of information (input) and a
place to send information (output). For our discussion, however, we define
I/O devices as devices that let the user interact with the computer.

figure 1.9 Basic computer architecture

Other peripheral devices

Main�
memory

Central�
processing�

unit

Controller
Video�

controller
Disk�

controller Controller

Bus

ch01.qxp 3/13/06 1:50 PM Page 11

12 CHAPTER 1 computer systems

input/output devices
Let’s look at some I/O devices in more detail. The most common input
devices are the keyboard and the mouse. Others include:

◗ bar code readers, such as the ones used at a grocery store checkout

◗ joysticks, often used for games and advanced graphical applications

◗ microphones, used by voice recognition systems that interpret simple
voice commands

◗ virtual reality devices, such as gloves that interpret the movement of
the user’s hand

◗ scanners, which convert text, photographs, and graphics into machine-
readable form

Monitors and printers are the most common output devices. Others include:

◗ plotters, which move pens across large sheets of paper (or vice versa)

◗ speakers, for audio output

◗ goggles, for virtual reality display

Some devices can handle both input and output. A touch screen system
can detect the user touching the screen at a particular place. Software can
then use the screen to display text and graphics in response to the user’s
touch. Touch screens are particularly useful in situations where the interface
to the machine must be simple, such as at an information booth.

The computer described in Figure 1.8 includes a monitor with a 17-inch
diagonal display area. A picture is created by breaking it up into small pieces
called pixels, a term that stands for “picture elements.” The monitor can dis-
play a grid of 1280 by 1024 pixels. The last section of this chapter explores
the representation of graphics in more detail.

main memory and secondary memory
Main memory is made up of a series of small, connected memory locations,
as shown in Figure 1.10. Each memory location has a unique number called
an address.

When data is stored in a memory location, it overwrites and
destroys any information that was stored at that location. However,
data is read from a memory location without affecting it.

On many computers, each memory location consists of eight bits,
or one byte, of information. If we need to store a value that cannot be

The address is the unique
number of a memory location.
It is used when storing and
retrieving data from memory.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 12

1.1 hardware components 13

represented in a single byte, such as a large number, then multiple,
consecutive bytes are used to store the data.

The storage capacity of a device such as main memory is the total
number of bytes it can hold. Devices can store thousands or millions
of bytes, so you should become familiar with larger units of measure.
Because computer memory is based on the binary number system, all
units of storage are powers of two. A kilobyte (KB) is 1,024, or 210,
bytes. Some larger units of storage are a megabyte (MB), a gigabyte (GB),
and a terabyte (TB), as listed in Figure 1.11. It’s usually easier to think about
these numbers if we round them off. For example, most computer users think
of a kilobyte as approximately one thousand bytes, a megabyte as approxi-
mately one million bytes, and so forth.

figure 1.10 Memory locations

Addresses

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812�

Data values are stored in

memory locations.

Large values are stored

in consecutive memory

locations.

Data written to a memory
location overwrites and
destroys any information that
was stored at that location.
Data read from a memory
location leaves the value in
memory alone.

key
concept

figure 1.11 Units of binary storage

byte�

kilobyte�

megabyte�

gigabyte�

terabyte

F

KB�

MB�

GB�

TB

20 = 1

210 = 1024�

220 = 1,048,576�

230 = 1,073,741,824�

240 = 1,099,511,627,776

Unit Symbol Number of Bytes

ch01.qxp 3/13/06 1:50 PM Page 13

14 CHAPTER 1 computer systems

Many personal computers have 256 or 512 megabytes of main memory,
or RAM, such as the system described in Figure 1.8. (We discuss RAM in
more detail later in the chapter.) A large main memory allows large pro-
grams, or several programs, to run because they don’t have to get informa-
tion from secondary memory as often.

Main memory is usually volatile, meaning that the information
stored in it will be lost if its electric power supply is turned off. When
you are working on a computer, you should often save your work
onto a secondary memory device such as a disk in case the power is
lost. Secondary memory devices are usually nonvolatile, meaning the
information is saved even if the power supply is turned off.

The most common secondary storage devices are hard disks and
floppy disks. A high-density floppy disk can store 1.44 MB of information.
The storage capacities of hard drives vary, but on personal computers, the
hard drive can usually store between 40 GB and 120 GB, such as in the sys-
tem described in Figure 1.8.

A disk is a magnetic medium on which bits are represented as magnetized
particles. A read/write head passes over the spinning disk, reading or writing
information. A hard disk drive might actually have several disks in a column
with several read/write heads, such as the one shown in Figure 1.12.

To get a feel for how much information these devices can store, all the
information in this book, including pictures and formatting, requires about
6 MB of storage.

Main memory is volatile,
meaning the stored information
is lost when the electric power
is turned off. Secondary
memory devices are usually
nonvolatile.

ke
y

co
nc

ep
t

figure 1.12 A hard disk drive with multiple disks and read/write heads

Disks

F

Read/write

head

ch01.qxp 3/13/06 1:50 PM Page 14

1.1 hardware components 15

Magnetic tapes are also used as secondary storage but are slower than disks
because of the way information is accessed. A disk is a direct access device
since the read/write head can move, in general, directly to the information
needed. The terms direct access and random access are often confused.
However, information on a tape can be accessed only after first getting past
the intervening data. A tape must be rewound or fast-forwarded to get to the
right place, the same way you have to fast-forward through a cassette tape to
get to the song you want to hear. A tape is therefore considered a sequential
access device. Tapes are usually used only to store information when it is no
longer used very often, or to provide a backup copy of the information on a
disk.

Two other terms are used to describe memory devices: random access
memory (RAM) and read-only memory (ROM). It’s important to understand
these terms because they are used often, and their names can be misleading.
RAM and main memory are basically the same thing. The term RAM seems
to mean something it shouldn’t. Both RAM and ROM are direct (or random)
access devices. RAM should probably be called read-write memory, since
data can be both written to it and read from it. Information stored on ROM,
on the other hand, cannot be changed (as the term “read-only” implies).
ROM chips are often embedded into the main circuit board of a computer
and used to provide the instructions needed when the computer is initially
turned on.

A CD-ROM is a portable secondary memory device. CD stands for
compact disc. It is called ROM because information is stored perma-
nently when the CD is created and cannot be changed. Like a musical
CD, a CD-ROM stores information in binary format. When the CD
is created, a microscopic pit is pressed into the disc to represent a
binary 1, and the disc is left smooth to represent a binary 0. The bits are read
by shining a low-intensity laser beam onto the spinning disc. The laser beam
reflects strongly from a smooth area on the disc but weakly from a pitted
area. A sensor determines whether each bit is a 1 or a 0. A typical CD-ROM
can store about 650 MB.

There are many kinds of CD technology today. It is now common for a
home computer to come with a CD-Recordable (CD-R) drive. A CD-R can
be used to create a CD for music or for general computer storage. Once cre-
ated, you can use a CD-R disc in a standard CD player, but you can’t change
the information on a CD-R disc once it has been “burned.” Music CDs that
you buy in a store are pressed from a mold, whereas CD-Rs are burned with
a laser.

The surface of a CD has both
smooth areas and small pits. A
pit represents a binary 1 and a
smooth area represents a
binary 0.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 15

16 CHAPTER 1 computer systems

A CD-Rewritable (CD-RW) disc can be erased and reused. It can
be reused because the pits and flat surfaces of a normal CD are made
on a CD-RW by coating the surface of the disc with a material that,
when heated to one temperature becomes nonreflective and when
heated to a different temperature becomes reflective. The CD-RW
media doesn’t work in all players, but CD-Rewritable drives can cre-
ate both CD-R and CD-RW discs.

CDs started as a popular format for music; they later came to be used as
a general computer storage device. Similarly, the DVD format was first cre-
ated for video and is now making headway as a general format for computer
data. DVD once stood for digital video disc or digital versatile disc. A DVD
has a tighter format (more bits per square inch) than a CD so it can store
much more information. It is likely that DVD-ROMs will replace CD-ROMs
completely because a DVD drive can read a CD-ROM. There are currently
six different formats for recordable DVDs.

The speed of a CD drive is expressed in multiples of x, which represents a
data transfer speed of 153,600 bytes of data per second. The drive described
in Figure 1.8 has a maximum data speed of 48x, although it probably writes
data at much slower speeds.

How much a device can store changes as technology improves. A general
rule in the computer industry is that storage capacity doubles every 18
months. However, this progress eventually will slow down as storage capac-
ities approach absolute physical limits.

the central processing unit
The central processing unit (CPU) uses main memory to perform all the basic
processing in a computer. The CPU reads and executes instructions, one after
another, in a continuous cycle. The CPU is made up of three important com-
ponents, as shown in Figure 1.13. The control unit handles the processing
steps, the registers are small amounts of storage space in the CPU itself, and
the arithmetic/logic unit does calculations and makes decisions.

The control unit transfers data and instructions between main memory
and the registers in the CPU. It also controls the circuitry in the
arithmetic/logic unit.

In most CPUs, some registers have special purposes. For example, the
instruction register holds the current instruction being executed. The pro-
gram counter holds the address of the next instruction to be executed. In
addition to these and other special-purpose registers, the CPU also contains
a set of general-purpose registers.

A rewritable CD simulates the
pits and smooth areas of a
regular CD using a coating that
can be made nonreflective or
reflective as needed.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 16

1.1 hardware components 17

The idea of storing both program instructions and data together in main
memory is called the von Neumann architecture of computer design, named
after John von Neumann, who first advanced this programming concept in
1945. These computers continually follow the fetch-decode-execute cycle
depicted in Figure 1.14. An instruction is fetched from main memory
and put into the instruction register. The program counter increases
to get ready for the next cycle. Then the instruction is decoded elec-
tronically to determine which operation to carry out. Finally, the con-
trol unit turns on the correct circuitry to carry out the instruction,
which may load a data value into a register or add two values
together, for example.

The CPU is on a chip called a microprocessor, a part of the main circuit
board of the computer. This board also contains ROM chips and commu-
nication sockets to which device controllers, such as the controller that
manages the video display, can be connected.

figure 1.13 CPU components and main memory

Bus

F

CPU

Registers

Arithmetic/logic

unit

Main

memory

Control unit

figure 1.14 The fetch-decode-execute cycle

Fetch an instruction

from main memory

Execute the instruction

F

Decode the instruction

and increment program

counter

The von Neumann architecture
and the fetch-decode-execute
cycle form the foundation of
computer processing.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 17

Another part of the main circuit board is the system clock. The clock
sends out an electronic pulse at regular intervals, so that everything going on

in the CPU happens on the same schedule. The rate at which the
pulses occur is called the clock speed, and it varies depending on the
processor. The computer described in Figure 1.8 includes a Pentium 4
processor that runs at a clock speed of 2.8 gigahertz (GHz), or about
2.8 billion pulses per second. The speed of the system clock tells you

about how fast the CPU executes instructions. Like storage capacities, the
speed of processors is constantly increasing with advances in technology.

1.2 networks
A single computer can do a lot, but connecting several computers together
into networks can dramatically increase how much they can do and make it
easier to share information. A network is two or more computers connected
together so they can exchange information. Using networks is how commer-
cial computers operate today. New technologies are emerging every day to
improve networks.

Figure 1.15 shows a simple computer network. One of the devices on the
network is a printer. Any computer connected to the network can print a
document on that printer. One of the computers on the network is a file
server, which does nothing but store programs and data that are needed by
many network users. A file server usually has a large amount of secondary
memory. When a network has a file server, each individual computer doesn’t
need its own copy of a program.

18 CHAPTER 1 computer systems

The speed of the system clock
indicates how fast the CPU
executes instructions.ke

y
co

nc
ep

t

figure 1.15 A simple computer network

Shared printer

File server

ch01.qxp 3/13/06 1:50 PM Page 18

1.2 networks 19

network connections
If two computers are directly connected, they can communicate in basically
the same way that information moves across wires inside a single machine.
When two computers are close to each other, this is called a point-to-point
connection. If point-to-point connections are used, every computer is directly
connected by a wire to every other computer in the network. But if the com-
puters are far apart, having a separate wire for each connection won’t
work because every time a new computer is added to the network, a
new wire will have to be installed for each computer already in the
network. Furthermore, a single computer can handle only a small
number of direct connections.

Figure 1.16 shows multiple point-to-point connections. Consider the
number of wires that would be needed if two or three additional computers
were added to the network.

Look at the diagrams in Figure 1.15 and Figure 1.16. All of the comput-
ers in Figure 1.15 share a single communication line. Each computer on the
network has its own network address. These addresses are like the addresses
in main memory except that they identify individual computers on a network
instead of individual memory locations inside a single computer. A message
from one computer to another needs the network address of the computer
receiving the message.

Sharing a communication line is less expensive and makes adding
new computers to the network easier. However, a shared line also
means delays. The computers on the network cannot use the commu-
nication line at the same time. They have to take turns, which means
they have to wait when the line is busy.

One way to improve network delays is to divide large messages into small
pieces, called packets, and then send the individual packets across the net-
work mixed up with pieces of other messages sent by other users. The pack-
ets are collected at the destination and reassembled into the original message.

A network is two or more
computers connected together
so they can exchange
information.

key
concept

figure 1.16 Point-to-point connections

Sharing a communication line
creates delays, but it is cost
effective and simplifies adding
new computers to the network.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 19

20 CHAPTER 1 computer systems

This is like a group of people using a conveyor belt to move a set of boxes
from one place to another. If only one person were allowed to use the con-
veyor belt at a time, and that person had a lot of boxes to move, everyone
else would have to wait a long time before they could use it. By taking turns,
each person can put one box on at a time, and they all can get their work
done. It’s not as fast as having a conveyor belt of your own, but it’s not as
slow as having to wait until everyone else is finished.

local-area networks and wide-area networks
A local-area network (LAN) is designed to span short distances and connect
a small number of computers. Usually a LAN connects the machines in only
one building or in a single room. LANs are convenient to install and manage

and are highly reliable. As computers became smaller, LANs became
an inexpensive way to share information throughout an organization.
However, having a LAN is like having a telephone system that allows
you to call only the people in your own town. We need to be able to
share information across longer distances.

A wide-area network (WAN) connects two or more LANs, often across
long distances. Usually one computer on each LAN handles the communica-
tion across a WAN. This means the other computers in a LAN don’t need to
know the details of long-distance communication. Figure 1.17 shows several
LANs connected into a WAN. The LANs connected by a WAN are often

A local-area network (LAN) is an
inexpensive way to share
information and resources
throughout an organization.

ke
y

co
nc

ep
t

figure 1.17 LANs connected into a WAN

LAN

F

Long-distance

connection

One computer

in a LAN

ch01.qxp 3/13/06 1:50 PM Page 20

1.2 networks 21

owned by different companies or organizations, and might even be located in
different countries.

Because of networks, computing resources can now be shared among
many users, and computer-based communication across the entire world is
now possible. In fact, the use of networks is now so common that some com-
puters can’t work on their own.

the Internet
Throughout the 1970s, a U.S. government organization called the
Advanced Research Projects Agency (ARPA) funded several projects
to explore network technology. One result of these efforts was the
ARPANET, a WAN that eventually became known as the Internet.
The Internet is a network of networks. The term “Internet” comes from the
word internetworking—connecting many smaller networks together.

From the mid 1980s through today, the Internet has grown incredibly. In
1983, there were fewer than 600 computers connected to the Internet. By the
year 2000, that number had reached over 10 million. As more and more
computers connect to the Internet, keeping up with the larger number of
users and heavier traffic has been difficult. New technologies have replaced
the ARPANET several times over, each time providing more capacity and
faster processing.

A protocol is a set of rules about how two things communicate.
The software that controls the movement of messages across the
Internet must follow a set of protocols called TCP/IP (pronounced by
spelling out the letters, T-C-P-I-P). TCP stands for Transmission
Control Protocol, and IP stands for Internet Protocol. The IP software
defines how information is formatted and transferred. The TCP software
handles problems such as pieces of information arriving out of order or
information getting lost, which can happen if too much information arrives
at one location at the same time.

Every computer connected to the Internet has an IP address that identifies
it among all other computers on the Internet. An example of an IP address is
204.192.116.2. Fortunately, the users of the Internet rarely have to deal with
IP addresses. The Internet lets each computer be given a name. Like IP
addresses, the names must be unique. The Internet name of a computer is
often called its Internet address. Two examples of Internet addresses are
spencer.mcps.org and kant.gestalt-llc.com.

The first part of an Internet address is the local name of a specific com-
puter. The rest of the address is the domain name. The domain name tells you

The Internet is a wide-area
network (WAN) that spans the
globe.

key
concept

TCP/IP is the set of software
protocols, or rules, that govern
the movement of messages
across the Internet.

k ey
concept

ch01.qxp 3/13/06 1:50 PM Page 21

22 CHAPTER 1 computer systems

about the organization to which the computer belongs. For example,
mcps.org is the domain name for the network of computers in the
Montgomery County public school system, and spencer might be the
name of a particular computer in the network. Because the domain

names are unique, many organizations can have a computer named spencer
without confusion. Individual schools might be assigned subdomains that are
added to the basic domain name. For example, the chs.mcps.org subdomain
is devoted to Christiansburg High School.

The last part of each domain name, called a top-level domain (TLD), usu-
ally indicates the type of organization to which the computer belongs. The
TLD edu indicates an educational institution. The TLD com refers to a com-
mercial business. For example, gestalt-llc.com refers to Gestalt, LLC, a com-
pany specializing in software technologies. Another common TLD is org,
used by nonprofit organizations. Many computers, especially those outside
of the United States, use a TLD that tells the country of origin, such as uk
for the United Kingdom. Recently, some new top-level domain names have
been created, such as biz, info, and name.

When an Internet address is referenced, it gets translated to its correspon-
ding IP address, which is used from that point on. The software that does
this translation is called the Domain Name System (DNS). Each organization
connected to the Internet operates a domain server that maintains a list of all
computers at that organization and their IP addresses. It works like tele-
phone directory assistance in that you give the name, and the domain server
gives back a number. If the local domain server does not have the IP address
for the name, it contacts another domain server that does.

The Internet has revolutionized computer processing. At first, intercon-
nected computers were used to send electronic mail. Today the Internet con-
nects us through the World Wide Web.

the World Wide Web
The Internet lets us share information. The World Wide Web (also known as
WWW or simply the Web) makes sharing information easy, with the click of
a mouse.

The Web is based on the ideas of hypertext and hypermedia. The term
hypertext was first used in 1965 to describe a way to organize information.

In fact, that idea was around as early as the 1940s. Researchers on the
Manhattan Project, who were developing the first atomic bomb, envi-
sioned such an approach. The idea is that documents can be linked at
logical points so that the reader can jump from one document to

Every computer connected to
the Internet has an IP address
that uniquely identifies it.ke

y
co

nc
ep

t

The World Wide Web is software
that makes sharing information
across a network easy.ke

y
co

nc
ep

t

ch01.qxp 3/13/06 1:50 PM Page 22

1.2 networks 23

another. When graphics, sound, animations, and video are mixed in, we call
this hypermedia.

A browser is a software tool that loads and formats Web documents for
viewing. Mosaic, the first graphical interface browser for the Web, was
released in 1993. The designer of a Web document defines links to other Web
information that might be anywhere on the Internet. Some of the people who
developed Mosaic went on to found the Netscape Communications Corp.
and create the popular Netscape Navigator browser, which is shown in
Figure 1.18. Microsoft’s Internet Explorer is another popular browser.

A computer dedicated to providing access to Web documents is
called a Web server. Browsers load and interpret documents provided
by a Web server. Many such documents are formatted using the
HyperText Markup Language (HTML). Java programs can be
embedded in HTML documents and executed through Web browsers.
We explore this relationship in more detail in Chapter 2.

A browser is a software tool
that loads and formats Web
documents for viewing. These
documents are often written
using the HyperText Markup
Language (HTML).

key
concept

figure 1.18 Netscape Navigator browsing an HTML document
(used with permission of ACM)

ch01.qxp 3/13/06 1:50 PM Page 23

24 CHAPTER 1 computer systems

Uniform Resource Locators
Every Web document has a Uniform Resource Locator (URL). A URL
uniquely specifies documents and other information for a Web browser. An
example URL is:

http://www.yahoo.com

A URL contains several pieces of information. The first piece is a
protocol, which determines the way the browser should communicate.
The second piece is the Internet address of the machine on which the
document is stored. The third piece of information is the file name. If
no file name is given, as is the case with the Yahoo URL, the Web
server often provides a default page (such as index.html).

Let’s look at another example URL:

http://www.gestalt-llc.com/vision.html

In this URL, the protocol is http, which stands for HyperText Transfer
Protocol. The machine referenced is www (a typical reference to a Web
server), found at domain gestalt-llc.com. Finally, vision.html is a file to be
transferred to the browser for viewing. Many other forms for URLs exist,
but this form is the most common.

the Internet vs. the World Wide Web
The terms Internet and World Wide Web do not mean the same thing. There
are important differences between the two. The Internet is a network of com-
puters all over the world. The Web is a set of software applications that lets
us use the Internet to view and exchange information. The Web is not a net-
work. Although the Web is used effectively with the Internet, it is not bound
to it. The Web can be used on a LAN that is not connected to any other net-
work or even on a single machine to display HTML documents.

1.3 programming
The Java programming language allows software to be easily exchanged and
executed via the Web. The rest of this book shows you how to create pro-
grams using Java. This section discusses the purpose of programming in gen-
eral and introduces the Java programming language.

A URL uniquely specifies
documents and other
information found on the Web
for a browser to obtain and
display.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 24

1.3 programming 25

problem solving
The purpose of writing a program is to solve a problem. Problem solving, in
general, consists of multiple steps:

1. Understanding the problem.

2. Breaking the problem into manageable pieces.

3. Designing a solution.

4. Considering alternatives to the solution and refining the solution.

5. Implementing the solution.

6. Testing the solution and fixing any problems.

Although this approach applies to any kind of problem solving, it
works particularly well when developing software.

The first step, understanding the problem, may sound obvious, but skip-
ping this step can cause us all kinds of problems. If we try to solve a prob-
lem we don’t completely understand, we often end up solving the wrong
problem.

After we understand the problem, we then break the problem into man-
ageable pieces and design a solution. These steps go hand in hand. A solu-
tion to any problem is almost never one big activity. Instead, it is a series of
small tasks that work together to perform a larger task. When developing
software, we don’t write one big program. We design separate pieces that are
responsible for parts of the solution, then we put all the parts together.

Our first idea for a solution may not be the best one. We must con-
sider all the possible solutions. The earlier we consider alternatives,
the easier it is to modify our approach.

Next we take the design and put it in a usable form. This stage is
where we actually write the program. Too often programming is thought of
as writing code. But in most cases, this is one of the last and easiest steps.
The act of designing the program should be more interesting and creative
than just turning the design into a particular programming language.

Finally, we test our solution to find any mistakes so that we can fix them.
Testing makes sure the program correctly represents the design, which in
turn provides a solution to the problem.

Throughout this text we explore programming techniques that let us ele-
gantly design and implement solutions to problems. Although we will often
go into detail, we should not forget that programming is just a tool to help
us solve problems.

The purpose of writing a
program is to solve a problem.

key
concept

The first solution we design to
solve a problem may not be the
best one.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 25

26 CHAPTER 1 computer systems

the Java programming language
A program is written in a particular programming language that uses specific
words and symbols to express the problem solution. A programming lan-
guage defines a set of rules that determine exactly how a programmer can
combine the words and symbols of the language into programming state-
ments, which are the instructions that are carried out when the program is
executed.

There are many programming languages. We use the Java language in this
book to demonstrate programming concepts and techniques. Although our
main goal is to learn these software development concepts, an important
side-effect will be to learn the development of Java programs.

Java was developed in the early 1990s by James Gosling at Sun
Microsystems. Java was introduced to the public in 1995 and has gained
tremendous popularity since.

One reason Java got attention was because it was the first programming
language created for the Web, but it also has important features that make it
a useful general-purpose programming language.

Java is an object-oriented programming language. Objects are the
basic pieces that make up a program. Other programming languages,
such as C++, let a programmer use objects but don’t reinforce that
approach, which can lead to confusing program designs.

Most importantly, Java is a good language to use to learn programming
concepts. It doesn’t get bogged down in unnecessary issues as some other lan-
guages do. Using Java, we can focus on important issues and not on less
important details.

The Java language has a library of extra software that we can use when
developing programs. This library lets us create graphics, communicate over
networks, and interact with databases, among many other features.
Although we won’t be able to cover all aspects of the libraries, we will
explore many of them.

Java is used all over the world. It is one of the fastest growing program-
ming technologies of all time. So not only is it a good language in which to
learn programming concepts, it is also a practical language that will serve
you well in the future.

This book focuses on the
principles of object-oriented
programming.ke

y
co

nc
ep

t

ch01.qxp 3/13/06 1:50 PM Page 26

1.3 programming 27

a Java program
Let’s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This program prints a quote by Abraham
Lincoln. The output is shown below the program listing.

All Java applications have a similar basic structure. Despite its small size
and simple purpose, this program contains several important features. Let’s
examine its pieces.

The first few lines of the program are comments, which start with
the // symbols and continue to the end of the line. Comments don’t
affect what the program does but are included to help someone read-
ing the code understand what the program does. Programmers should
include comments throughout a program to clearly identify the pur-
pose of the program and describe any special processing. Any written
comments or documents, including a user’s guide and technical references,
are called documentation. Comments included in a program are called inline
documentation.

listing
1.1

//**
// Lincoln.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the basic structure of a Java application.
//**

public class Lincoln
{

//---
// Prints a presidential quote.
//---
public static void main (String[] args)
{

System.out.println ("A quote by Abraham Lincoln:");

System.out.println ("Whatever you are, be a good one.");
}

}

A quote by Abraham Lincoln:
Whatever you are, be a good one.

Comments do not affect a
program’s processing; instead,
they help someone reading the
code understand what the
program does.

key
concept

output

ch01.qxp 3/13/06 1:50 PM Page 27

28 CHAPTER 1 computer systems

The rest of the program in Listing 1.1 is a class definition. This class is
called Lincoln, though we could have named it just about anything we
wished. The class definition runs from the first opening brace ({) to the final
closing brace (}) on the last line of the program. All Java programs are
defined using class definitions.

Inside the class definition are some more comments describing the purpose
of the main method, which is defined directly below the comments. A
method is a group of programming statements that are given a name. In this
case, the name of the method is main and it contains only two programming
statements. Like a class definition, a method is also enclosed in braces.

All Java applications have a main method, which is where processing
begins. Each programming statement in the main method is executed, one at
a time in order, until the end of the method is reached. Then the program
ends, or terminates. The main method definition in a Java program is always
preceded by the words public, static, and void, which we examine later

in the text. The use of String and args does not come into play in
this particular program. We describe these later also.

The two lines of code in the main method invoke another method
called println (pronounced “print line”). We invoke, or call, a
method when we want it to execute. The println method prints the
specified characters to the screen. The characters to be printed are rep-
resented as a character string, enclosed in double quote characters (").

When the program is executed, it calls the println method to print the first
statement, calls it again to print the second statement, and then, because that
is the last line in the program, the program terminates.

The code executed when the println method is invoked is not defined in
this program. The println method is part of the System.out object,
which we explore in more detail in Chapter 2.

comments
Let’s look at comments in more detail. Comments are the only language fea-
ture that let programmers tell a person reading the code what they are
thinking. Comments should tell the reader what the programmer wants the
program to do. A program is often used for many years, and often many
changes are made to it over time. Even the original programmer may not
remember the details of a particular program when, at some point in the
future, changes are needed. Furthermore, the original programmer is not
always available to make the changes, and someone completely unfamiliar

In a Java application,
processing begins with the
main method. The main
method must always be
defined using the words
public, static, and void.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 28

1.3 programming 29

with the program will need to understand it. Good documentation is there-
fore very important.

As far as the Java programming language is concerned, comments can be
written using any content whatsoever. Comments are ignored by the com-
puter; they do not affect how the program executes.

The comments in the Lincoln program represent one of two types of
comments allowed in Java. The comments in Lincoln take the following
form:

// This is a comment.

This type of comment begins with a double slash (//) and continues to the
end of the line. You cannot have any characters between the two slashes. The
computer ignores any text after the double slash and to the end of the line.
A comment can follow code on the same line to document that particular
line, as in the following example:

System.out.println ("Monthly Report"); // always use this title

The second form a Java comment may have is:

/* This is another comment. */

This comment type does not use the end of a line to indicate the end of the
comment. Anything between the first slash-asterisk (/*) and the second
asterisk-slash (*/) is part of the comment, including the invisible newline
character that represents the end of a line. Therefore, this type of comment
can extend over multiple lines. No space can be between the slash and the
asterisk.

The two basic comment types can be used to create different documenta-
tion styles, such as:

// This is a comment on a single line.

//---
// Some comments such as those above methods or classes
// deserve to be blocked off to focus special
// attention on a particular aspect of your code. Note
// that each of these lines is technically a separate
// comment.
//---

/*
This is one comment
that spans several lines.

*/

ch01.qxp 3/13/06 1:50 PM Page 29

30 CHAPTER 1 computer systems

Programmers often concentrate so much on writing code that they focus
too little on documentation. You should develop good commenting practices
and make them a habit. Comments should be well written, often in complete
sentences. They should not tell the reader things that are obvious or confus-
ing. The following examples are not good comments:

System.out.println ("hello"); // prints hello
System.out.println ("test"); // change this later

The first comment tells the obvious purpose of the line and does not add any
new information to the statement. It is better to have no comment than a use-

less one. The second comment is confusing. What should be changed
later? When is later? Why should it be changed?

It is considered good programming style to use comments in a con-
sistent way throughout an entire program.

identifiers and reserved words
The various words used when writing programs are called identifiers. The
identifiers in the Lincoln program are class, Lincoln, public, static,
void, main, String, args, System, out, and println. These fall into
three categories:

◗ words that we make up (Lincoln and args)

◗ words that another programmer chose (String, System, out,
println, and main)

◗ words that are reserved for special purposes in the language (class,
public, static, and void)

While writing the program in Listing 1.1, we simply chose to name the
class Lincoln, but we could have used one of many other names. For exam-
ple, we could have called it Quote, or Abe, or GoodOne. The identifier args
(which is short for arguments) is often used in the way we use it in Lincoln,
but we could have used just about any identifier in its place.

The identifiers String, System, out, and println were chosen by other
programmers. These words are not part of the Java language. They are part
of a huge library of predefined code, a set of classes and methods that some-
one has already written for us. The authors of that code chose the identi-
fiers—we’re just using them. We discuss this library of predefined code in
more detail in Chapter 2.

Reserved words are identifiers that have a special meaning in a program-
ming language and can only be used in predefined ways. In the Lincoln

Inline documentation should
not be confusing or obvious.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 30

1.3 programming 31

program, the reserved words used are class, public, static, and void.
Throughout this book, we show Java reserved words in blue type. Figure
1.19 lists all of the Java reserved words in alphabetical order. The words
marked with an asterisk are reserved for possible future use in later versions
of the language but right now have no meaning in Java. A reserved word
cannot be used for any other purpose, such as naming a class or method.

An identifier that we make up for use in a program can be any combina-
tion of letters, digits, the underscore character (_), and the dollar sign ($),
but it cannot begin with a number. Identifiers may be of any length.
Therefore total, label7, nextStockItem, NUM_BOXES, and $amount are
all valid identifiers, but 4th_word and coin#value are not valid.

Both uppercase and lowercase letters can be used in an identifier, and the
difference is important. Java is case sensitive, which means that two identi-
fier names that differ only in the case of their letters are considered to be
different identifiers. Therefore total, Total, ToTaL, and TOTAL are all
different identifiers. As you can imagine, it is not a good idea to use identi-
fiers that differ only in their case because they can be easily confused.

Although the Java language doesn’t require it, using the same case
format for each kind of identifier makes your identifiers easier to
understand. For example, we use title case (uppercase for the first let-
ter of each word) for class names. That is a Java convention, although
it does not technically have to be followed. Throughout the text, we

figure 1.19 Java reserved words

abstract

assert

boolean

break

byte

case

catch

char

class

const*
continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto*
if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

F

Java is case sensitive. The
uppercase and lowercase
versions of a letter are distinct.
You should use the same case
convention for different types
of identifiers.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 31

32 CHAPTER 1 computer systems

describe the preferred case style for each type of identifier as we introduce
them.

An identifier can be as long as you like, but you should choose your
names carefully. They should be descriptive but not wordy. Don’t use
meaningless names such as a or x. An exception to this rule can be made
if the short name is actually descriptive, such as using x and y to represent
(x, y) coordinates on a graph. Likewise, you should not use unnecessarily
long names, such as the identifier theCurrentItemBeingProcessed.
The name currentItem would serve just as well.

As you might imagine, wordy identifiers are much less common
than the names that are not descriptive. You should always be careful
when abbreviating words. You might think curStVal is a good name
to represent the current stock value, but another person trying to
understand the code may have trouble figuring out what you meant.
It might not even be clear to you two months after writing it.

A name in Java is a series of identifiers separated by the dot (period) char-
acter. The name System.out is the way we designate the object through
which we invoked the println method. Names appear quite regularly in
Java programs.

Identifier

An identifier is a letter followed by zero or more letters and digits.
A Java Letter includes the 26 letters of the English alphabet in both
uppercase and lowercase, the $ and _ (underscore) characters, as well
as alphabetic characters from other languages. A Java Digit includes
the numbers 0 though 9.

Examples:

total
MAX_HEIGHT
num1
Keyboard

Java Letter
Java Letter
Java Digit

Identifier names should be
descriptive and readable.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 32

1.3 programming 33

white space
All Java programs use white space to separate the words and symbols
used in a program. White space consists of blanks, tabs, and newline
characters. The phrase white space refers to the fact that, on a white
sheet of paper with black printing, the space between the words and
symbols is white. A programmer uses white space to emphasize parts
of the code and make a program easier to read.

Except when it’s used to separate words, the computer ignores white
space. It does not affect the execution of a program. This fact gives pro-
grammers a great deal of flexibility in how they format a program. The lines
of a program should be divided in logical places and certain lines should be
indented and aligned so that the program’s structure is clear.

Because white space is ignored, we can write a program in many different
ways. For example, we could put as many words as possible on each line.
The code in Listing 1.2, the Lincoln2 program, is formatted quite dif-
ferently from Listing 1.1, Lincoln, but prints the same message.

Taking white space to the other extreme, we could write almost every word
and symbol on a different line, such as Lincoln3, shown in Listing 1.3.

All three versions of Lincoln are technically valid and will execute
in the same way, but they are different from a reader’s point of view.
Listings 1.2 and 1.3 show poor style and make the program hard to
understand. You should use a set of style guidelines that increase the
readability of your code.

White space can make a
program easier to read and
understand.

key
concept

listing
1.2

//**
// Lincoln2.java Author: Lewis/Loftus/Cocking
//
// Demonstrates a poorly formatted, though valid, program.
//**

public class Lincoln2{public static void main(String[]args){
System.out.println("A quote by Abraham Lincoln:");
System.out.println("Whatever you are, be a good one.");}}

A quote by Abraham Lincoln:
Whatever you are, be a good one.

You should always follow a set
of guidelines that establish the
way you format and document
your programs.

key
concept

output

ch01.qxp 3/13/06 1:50 PM Page 33

34 CHAPTER 1 computer systems

1.4 programming languages
Suppose you are giving travel directions to a friend. You might explain those
directions in any one of several languages, such as English, French, or Italian.
The directions are the same no matter which language you use, but the way
you express the directions is different. Furthermore, your friend must be able
to understand the language you use in order to follow the directions.

Similarly, you can write a program in one of many programming lan-
guages, such as Java, Ada, C, C++, Pascal, and Smalltalk. The purpose of the
program is the same no matter which language you use, but the particular

listing
1.3

//**
// Lincoln3.java Author: Lewis/Loftus/Cocking
//
// Demonstrates another valid program that is poorly formatted.
//**

public class
Lincoln3

{
public

static
void

main
(

String
[]

args)
{
System.out.println (

"A quote by Abraham Lincoln:")
; System.out.println

(
"Whatever you are, be a good one."
)

;
}

}

A quote by Abraham Lincoln:
Whatever you are, be a good one.

output

ch01.qxp 3/13/06 1:50 PM Page 34

1.4 programming languages 35

statements used to express the instructions, and the overall organization of
those instructions, vary with each language. Furthermore, a computer must
be able to understand the instructions in order to carry them out.

This section explores types of programming languages and describes the
special programs used to prepare and execute them.

programming language levels
There are four groups of programming languages. These groups basically
reflect the historical development of computer languages:

◗ machine language

◗ assembly language

◗ high-level languages

◗ fourth-generation languages

In order for a program to run on a computer, it must be in that computer’s
machine language. Each type of CPU has its own language. For that reason,
we can’t run a program written for a Sun Workstation, with its Sparc proces-
sor, on an IBM PC, with its Intel processor.

Each machine language instruction can do only a simple task. For
example, a single machine language instruction might copy a value
into a register or compare a value to zero. It might take four separate
machine language instructions to add two numbers together and to
store the result. However, a computer can do millions of these instruc-
tions in a second, and therefore many simple commands can be
quickly executed to accomplish complex tasks.

Machine language code is expressed as a series of binary digits and is
extremely difficult for humans to read and write. Originally, programs were
entered into the computer using switches or some similarly tedious method.
These techniques were time consuming and error prone.

Next came assembly language, which replaced binary digits with
mnemonics, short English-like words that represent commands or data. It is
much easier for programmers to deal with words than with binary digits.
However, an assembly language program cannot be executed directly on a
computer. It must first be translated into machine language.

Generally, each assembly language instruction equals a machine language
instruction. Therefore, like machine language, each assembly language
instruction does only one simple operation. Although assembly language is
better than machine code from a programmer’s point of view, it is still

All programs must be
translated to a particular CPU’s
machine language in order to
be executed.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 35

36 CHAPTER 1 computer systems

tedious to use. Both assembly language and machine language are considered
low-level languages.

Today, most programmers use a high-level language to write software. A
high-level language uses English-like phrases, so it is easier for programmers
to read and write. A single high-level language programming statement can
accomplish the equivalent of many—perhaps hundreds—of machine lan-
guage instructions. The term high-level means the programming statements
are like natural language. Java is a high-level language, as are Ada, C, C++,
and Smalltalk.

Figure 1.20 shows the same expressions written in a high-level language,
assembly language, and machine language. The expressions add two num-
bers together.

The high-level language expression in Figure 1.20 is readable for pro-
grammers. It is like an algebraic expression. The same assembly language
code is longer and somewhat less readable. The machine language is basi-
cally unreadable and much longer. In fact, only a small portion of the binary
machine code to add two numbers together is shown in Figure 1.20. The
complete machine language code for this particular expression is over 400
bits long.

High-level language code must be translated into machine language before
it can be executed. A high-level language means programmers don’t need to
know the machine language for the processor on which they are working.

Some programming languages operate at an even higher level than
high-level languages. They might be used for automatic report gener-
ation or interaction with a database. These languages are called
fourth-generation languages, or simply 4GLs, because they followed
the first three generations of computer programming: machine, assem-
bly, and high-level.

figure 1.20 The same expression in a high-level language,
assembly language, and machine language

Working with high-level
languages lets the programmer
ignore the details of machine
language.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 36

1.4 programming languages 37

compilers and interpreters
Several special-purpose programs are needed to help with the process of
developing new programs. They are sometimes called software tools because
they are used to build programs. Examples of basic software tools include an
editor, a compiler, and an interpreter.

You use an editor as you type a program into a computer and store it in
a file. There are many different editors with many different features. You
should get to know the editor you will use regularly so you can enter and
change your programs quickly.

Each time you need to make a change to the code of your program, you
open it in an editor. Figure 1.21 shows a very basic view of the program
development process. After editing and saving your program, you try to
translate it from high-level code into a form that can be executed. That trans-
lation may result in errors, in which case you return to the editor to make
changes to the code to fix the problems. Once the translation works, you can
execute the program and see the results. If the results are not what you want,
you again return to the editor to make changes.

The translation of source code into (ultimately) machine language for a
particular type of CPU can occur in many ways. A compiler is a program
that translates code in one language to code in another language. The origi-
nal code is called source code, and the language into which it is translated is
called the target language. For many compilers, the source code is translated
directly into a particular machine language. In that case, the translation
process occurs once, and the resulting program can be run whenever needed.

An interpreter is like a compiler but with an important difference. An
interpreter does the translation and execution in short bursts. A small part
of the source code, such as one statement, is translated and executed. Then
another statement is translated and executed, and so on. One advantage of
this technique is that it eliminates the need for a separate compilation phase.
However, the program generally runs more slowly because the translation
process occurs during each execution.

figure 1.21 Editing and running a program

Edit and

save program

Translate program

into executable form

errors errors

Execute program and

see results

F

ch01.qxp 3/13/06 1:50 PM Page 37

38 CHAPTER 1 computer systems

The process often used to translate and execute Java programs
combines the use of a compiler and an interpreter. This process is pic-
tured in Figure 1.22. The Java compiler translates Java source code
into Java bytecode, which is a low-level form something like machine
language code. The Java interpreter reads Java bytecode and executes
it on a specific machine. Another compiler could translate the byte-

code into a particular machine language for execution on that machine.

The difference between Java bytecode and true machine language code is
that Java bytecode is not tied to any particular processor type. This makes
Java architecture neutral, and therefore will work on many types of
machines. The only restriction is that there must be a Java interpreter or a
bytecode compiler for each processor type on which the Java bytecode is to
be executed.

Since the compilation process translates the high-level Java source code
into a low-level representation, the interpretation process works better than
interpreting high-level code directly. Executing a program by interpreting its
bytecode is still slower than executing machine code directly, but it is fast
enough for most applications. Note that Java bytecode could be compiled
into machine code.

The Java compiler and interpreter are part of the Java Software
Development Kit (SDK), which is sometimes referred to simply as the Java

A Java compiler translates
Java source code into Java
bytecode. A Java interpreter
translates and executes the
bytecode.

ke
y

co
nc

ep
t

figure 1.22 The Java translation and execution process

Java source

code

Java

bytecodeJava compiler

F

Java

interpreter

Bytecode

compiler

Machine

code

ch01.qxp 3/13/06 1:50 PM Page 38

1.4 programming languages 39

Development Kit (JDK). This kit also contains several other software
tools that may be useful to a programmer. The JDK can be down-
loaded for free from the Sun Microsystem Web site (java.sun.com) or
from this book’s Web site. Note that the standard JDK tools are exe-
cuted on the command line. That is, they are not graphical programs
with menus and buttons but rather are used by typing commands in a com-
mand window.

Other programs, called Integrated Development Environments (IDEs),
support the development of Java programs. IDEs combine an editor, com-
piler, and other Java support tools. Sun has a Java IDE called NetBeans
(www.netbeans.org) that incorporates the development tools of the JDK into
one convenient GUI-based program. IBM promotes a similar IDE called
Eclipse (www.eclipse.org). Both NetBeans and Eclipse are open source proj-
ects, meaning that they are developed by many different programmers and
are available for free. Which tools you will use to develop your programs
depend on your environment.

syntax and semantics
Each programming language has its own unique syntax. The syntax rules of
a language dictate exactly how the vocabulary elements of the language can
be combined to form statements. These rules must be followed in order to
create a program. We’ve already discussed several Java syntax rules (for
instance, the fact that an identifier cannot begin with a number is a syntax
rule). The fact that braces are used to begin and end classes and methods is
also a syntax rule. During compilation, all syntax rules are checked. If a pro-
gram is not syntactically correct, the compiler will issue error messages and
will not produce bytecode.

The semantics of a statement in a programming language define what will
happen when that statement is executed. The semantics of a program are
usually very well defined. That is, there is one and only one interpretation
for each statement. On the other hand, the language that people use, such as
English or French, can often have two or more different meanings. For exam-
ple, consider the following sentence:

Time flies like an arrow.

Most people would take this sentence to mean that time moves quickly in the
same way that an arrow moves quickly. However, if time is a verb (as in “run
the 50-yard dash and I’ll time you”) and the word flies is a noun (the plural

Java is architecture neutral
because Java bytecode is not
associated with any particular
machine.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 39

40 CHAPTER 1 computer systems

of fly), the meaning changes completely. A computer would have a
hard time determining which meaning is correct. Moreover, this state-
ment could describe the preferences of an unusual insect known as a
“time fly,” which might be found near an archery range. After all, as
Groucho Marx pointed out, fruit flies like a banana.

The point is that English allows multiple valid meanings, but a computer
language can’t. If a programming language instruction could have two dif-
ferent meanings, a computer would not be able to tell which one to follow.

errors
Several different kinds of problems can occur in software, particularly dur-
ing program development. The term computer error is often misused. From
a user’s point of view, anything that goes wrong is often called a computer
error. For example, suppose you charged a $23 item to your credit card, but
when you received the bill, the item was listed at $230. After you have the

problem fixed, the credit card company apologizes for the “computer
error.” Did the computer arbitrarily add a zero to the end of the num-
ber, or did it perhaps multiply the value by 10? Of course not. A com-
puter does what we tell it to do and uses the data we give it. If our
programs or data are wrong, then we can’t expect the results to be
correct. We call this “garbage in, garbage out.”

You will encounter three kinds of errors as you develop programs:

◗ compile-time error

◗ runtime error

◗ logical error

The compiler checks to make sure you are using the correct syntax. If the
syntax is wrong the compiler will produce a syntax error. The compiler also

tries to find other problems, such as the use of incompatible types of
data. The syntax might be technically correct, but you are still
attempting to do something that the language doesn’t semantically
allow. Any error identified by the compiler is called a compile-time
error. If a compile-time error occurs, an executable version of the
program is not created.

The syntax rules of a
programming language dictate
the form of a program. The
semantics dictate the meaning
of the program statements.

ke
y

co
nc

ep
t

A computer follows our
instructions exactly. The
programmer is responsible for
the accuracy and reliability of a
program.

ke
y

co
nc

ep
t

A Java program must be
syntactically correct or the
compiler will not produce
bytecode.

ke
y

co
nc

ep
t

ch01.qxp 3/13/06 1:50 PM Page 40

1.4 programming languages 41

The second kind of problem occurs during program execution. It is called
a runtime error, and it causes the program to terminate abnormally or
“crash.” For example, if we try to divide by zero, the program will crash.
The system simply stops processing your program. The best programs are
robust; that is, they avoid as many runtime errors as possible. For example,
the program code could guard against the possibility of dividing by zero and
handle the situation appropriately if it arises. In Java, many runtime errors
are represented as exceptions that can be caught and dealt with. We discuss
exceptions in Chapter 5.

The third kind of software problem is a logical error. In this case, the soft-
ware compiles and executes without complaint, but it produces the wrong
results. For example, a logical error occurs when a value is calculated incor-
rectly, such as adding two numbers when they should have been multiplied.
A programmer must test the program thoroughly, comparing the expected
results to those that actually occur. When defects are found, they must be
traced back to the source of the problem in the code and corrected. Finding
and correcting defects in a program is called debugging. Logical errors can
show up in many ways, and the cause might be hard to find.

language evolution
As computer technology evolves, so must the languages we use to program
them. The Java programming language has changed since its creation. This
text uses the most recent Java technology. Specifically, this book uses the
Java 2 Platform, which simply refers to the most advanced collection of Java
language features, software libraries, and tools. Several important changes
have been made since the previous version. The Java 2 Platform is organized
into three major groups:

◗ Java 2 Platform, Standard Edition (J2SE)

◗ Java 2 Platform, Enterprise Edition (J2EE)

◗ Java 2 Platform, Micro Edition (J2ME)

This book focuses on the Standard Edition, which, as the name implies, is the
mainstream version of the language and associated tools. Furthermore, this
book is based on the most recent version of the Standard Edition, which is
J2SE 5.0.

ch01.qxp 3/13/06 1:50 PM Page 41

42 CHAPTER 1 computer systems
G
R
A
P
H
I
C
S

T
R
A
C
K

1.5 graphics
Graphics play an important role in computer systems. In this book we
explore graphics and discuss how they are created and used. In fact, the last
one or two sections of each chapter are devoted to graphics topics. (These
sections can be skipped without losing continuity through the rest of the
text.) In this section, we explore representing a picture in a computer and dis-
playing it on a screen.

A picture, like all other information stored on a computer, must be digi-
tized by breaking the information into pieces and representing those pieces
as numbers. In the case of pictures, we break the picture into pixels (picture
elements), as we mentioned earlier in this chapter. A pixel is a very small
piece of the picture. The complete picture is stored by storing the color of
each pixel.

A black-and-white picture can be stored by representing
each pixel using a single bit. If the bit is zero, that pixel is
white; if the bit is 1, it is black. The more pixels used to rep-
resent a picture, the more realistic it looks. Figure 1.23
shows a black-and-white picture that has been stored digi-
tally and an enlargement of part of that picture, which
shows the pixels.

The pixels of a black-and-white
picture can be represented
using a single bit each, 0 for
white and 1 for black.

ke
y

co
nc

ep
t

figure 1.23 A digitized picture with a small portion magnified

ch01.qxp 3/13/06 1:50 PM Page 42

1.5 graphics 43

coordinate systems
When drawn, each pixel of a picture is mapped to a pixel on the screen.
Each computer system and programming language defines a coordinate sys-
tem like a coordinate system on a street map, so that we can find particular
pixels.

The Java programming language has a relatively simple coordinate sys-
tem. Figure 1.24 shows the Java coordinate system.

Each point in the Java coordinate system is represented using an (x, y) pair
of values. The top-left corner of any Java drawing area has coordinates (0,
0). The x-axis coordinates get larger as you move to the right, and the y-axis
coordinates get larger as you move down.

A Java program does not have to be graphical in nature. However, if it is,
each graphical component in the program has its own coordinate system,
with the origin (0, 0) in the top-left corner. This makes it easy to manage
graphical elements.

representing color
Color pictures are divided into pixels, just as black-and-
white pictures are. However, because each pixel can be
one of many colors, it is not enough to represent each
pixel using only one bit. There are many ways to represent
the color of a pixel. This section explores one popular
technique.

figure 1.24 The Java coordinate system

Y Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

The pixels of a color picture
can be represented using three
numbers, collectively called the
RGB value, which represent the
relative contributions of three
primary colors: red, green, and
blue.

key
concept

ch01.qxp 3/13/06 1:50 PM Page 43

44 CHAPTER 1 computer systems

Every color can be represented as a mix of three primary colors: red,
green, and blue. In Java, as in many other computer languages, colors are
specified by three numbers called an RGB value. RGB stands for Red-Green-
Blue. Each number represents the contribution of a primary color. Using one
byte (8 bits) to store each of the three numbers, the numbers can range from
0 to 255. How much of each primary color determines the overall color. For
example, high values of red and green combined with a low level of blue
results in a shade of yellow.

In the graphics sections of other chapters we explore the use of color and
how to control it in a Java program.

ch01.qxp 3/13/06 1:50 PM Page 44

summary of key concepts 45

◗ A computer system consists of hardware and software that work
together to help us solve problems.

◗ To execute a program, the computer first copies the program from
secondary memory to main memory. The CPU then reads the pro-
gram instructions from main memory, executing them one at a time
until the program ends.

◗ The operating system provides a user interface and manages computer
resources.

◗ As far as the user is concerned, the interface is the program.

◗ Digital computers store information by breaking it into pieces and
representing each piece as a number.

◗ Binary values are used to store all information in a computer because
binary-based devices are inexpensive and reliable.

◗ There are exactly 2N ways of arranging N bits. Therefore N bits can
represent up to 2N unique items.

◗ The core of a computer is made up of the CPU and the main memory.
Main memory is used to store programs and data. The CPU executes
a program’s instructions one at a time.

◗ An address is a unique number assigned to each memory location. It
is used when storing and retrieving data from memory.

◗ Data written to a memory location overwrites and destroys any infor-
mation that was stored at that location. Data read from a memory
location leaves information in memory alone.

◗ The information in main memory is stored only as long as electric
power is supplied. The information in secondary memory is stored
until it is deliberately deleted.

◗ The surface of a CD has both smooth areas and small pits. A pit rep-
resents a binary 1 and a smooth area represents a binary 0.

◗ A rewritable CD imitates the pits and smooth areas of a regular CD
using a coating that can be made nonreflective or reflective as needed.

◗ The von Neumann architecture and the fetch-decode-execute cycle are
the foundation of computer processing.

◗ The speed of the system clock tells us how fast the CPU executes
instructions.

ch01.qxp 3/13/06 1:50 PM Page 45

46 CHAPTER 1 computer systems

◗ A network is two or more computers connected together so they can
exchange information.

◗ Sharing a communication line creates delays, but it is inexpensive and
makes adding new computers to the network easier.

◗ A local-area network (LAN) is an inexpensive way to share informa-
tion and resources throughout an organization.

◗ The Internet is a wide-area network (WAN) that spans the globe.

◗ TCP/IP is the set of software protocols, or rules, for moving messages
across the Internet.

◗ Every computer connected to the Internet has a unique IP address.

◗ The World Wide Web is software that makes sharing information
across a network easy.

◗ A browser is a software tool that loads and formats Web documents
for viewing. These documents are often written in HyperText Markup
Language (HTML).

◗ A URL is the unique name of a Web document that a browser needs
to find and display it.

◗ The purpose of writing a program is to solve a problem.

◗ The first solution to a problem may not be the best one.

◗ Java is an object-oriented programming language.

◗ Comments help the people who read code understand what the pro-
grammer had in mind.

◗ Comments should be clear and helpful.

◗ In a Java application, processing begins with the main method. The
main method must always be defined using the words public,
static, and void.

◗ Java is case sensitive. The uppercase and lowercase versions of a letter
are distinct. You should use the same case convention for different
types of identifiers.

◗ Identifier names should be descriptive and readable.

◗ White space can make a program easier to read and understand.

◗ You should always follow a set of guidelines that establish the way
you format and document your programs.

◗ All programs must be translated to a particular CPU’s machine lan-
guage in order to be executed.

ch01.qxp 3/13/06 1:50 PM Page 46

self-review questions 47

◗ Working with high-level languages lets the programmer ignore the
machine language.

◗ A Java compiler translates Java source code into Java bytecode. A
Java interpreter translates and executes the bytecode.

◗ Java is architecture neutral because Java bytecode doesn’t have to run
on any particular hardware platform.

◗ The syntax rules of a programming language dictate the form of a
program. The semantics dictate the meaning of the program state-
ments.

◗ A computer follows our instructions exactly. The programmer is
responsible for the accuracy and reliability of a program.

◗ A Java program must be syntactically correct or the compiler will not
produce bytecode.

◗ The pixels of a black-and-white picture can be represented using a
single bit each, 0 for white and 1 for black.

◗ The pixels of a color picture can be represented using three numbers,
called the RGB value, for the three primary colors: red, green, and
blue.

self-review questions
1.1 What is hardware? What is software?

1.2 What are the two jobs of an operating system?

1.3 What happens to information when it is stored digitally?

1.4 How many items can be represented with the following?

a. 2 bits

b. 4 bits

c. 5 bits

d. 7 bits

1.5 How many bits are there in each of the following?

a. 8 bytes

b. 2 KB

c. 4 MB

ch01.qxp 3/13/06 1:50 PM Page 47

48 CHAPTER 1 computer systems

1.6 What are the two main hardware components in a computer?
How do they work with each other?

1.7 What is a memory address?

1.8 What does volatile mean? Which memory devices are volatile
and which are nonvolatile?

1.9 What is a file server?

1.10 What is the total number of communication lines needed for a
fully connected point-to-point network of five computers? Six
computers?

1.11 Where does the word “Internet” come from?

1.12 Explain the parts of the following URLs:

a. chs.mcps.org/Faculty/math.htm

b. java.sun.com/products/index.html

1.13 What is the difference between a high-level language and
machine language?

1.14 What is Java bytecode?

1.15 What is white space? Does it change program execution?

1.16 Which of the following are not valid Java identifiers? Why?

a. RESULT

b. result

c. 12345

d. x12345y

e. black&white

f. answer_7

1.17 What do we mean by the syntax and semantics of a program-
ming language?

1.18 How can a black-and-white picture be represented using 1s and
0s?

ch01.qxp 3/13/06 1:50 PM Page 48

multiple choice 49

multiple choice
1.1 If a picture was made up of 64 possible colors, how many bits

would be needed to store each pixel of the picture?

a. 4

b. 5

c. 6

d. 7

e. 8

1.2 How many bits are there in 12 KB?

a. 12,000

b. 98,304

c. 8192

d. 9600

e. 12,288

1.3 Which of the following is equivalent to 220 3 22 bits?

a. 2 KB

b. 4 KB

c. 2 MB

d. 4 MB

e. 4 GB

1.4 How many different items can be represented with 11 bits?

a. 11

b. 22

c. 121

d. 1100

e. 2048

1.5 Which of the following is an example of an analog device?

a. mercury thermometer

b. computer

c. music CD

d. digital alarm clock

e. vending machine

ch01.qxp 3/13/06 1:50 PM Page 49

50 CHAPTER 1 computer systems

1.6 Which of the following is not a valid Java identifier?

a. Factorial

b. anExtremelyLongIdentifierIfYouAskMe

c. 2ndLevel

d. level2

e. highest$

1.7 Which of the following is a valid Java identifier?

a. 14andCounting

b. max_value

c. 123

d. %taxRate

e. hook&ladder

1.8 Which of the following pairs of variables are different from each
other?

a. Total and total

b. case and CASE

c. codeTwo and code2

d. oneMore and one_More

e. all of the above

true/false
1.1 The identifiers Maximum and maximum are considered the same

in Java.

1.2 ROM means random access device.

1.3 Computers continually follow the fetch-decode-execute cycle.

1.4 A network is two or more computers connected together so they
can exchange information.

1.5 The first step in problem solving is to start implementing the
solution.

1.6 Web pages are usually formatted using the HyperText Markup
Language (HTML).

1.7 Identifiers in Java may contain any characters you can find on
your keyboard.

ch01.qxp 3/13/06 1:50 PM Page 50

short answer 51

1.8 Java is an object-oriented programming language.

1.9 The term white space refers to characters that are not part of the
alphabet or numbers, such as the symbols %, &, and @.

1.10 Java is an assembly language.

short answer
1.1 Describe the hardware parts of your personal computer or of a

computer in your school lab. Include the processor type and
speed, storage capacities of main and secondary memory, and
types of I/O devices.

1.2 Why do we use the binary number system to store information
on a computer?

1.3 If a language uses 240 letters and symbols, how many bits
would be needed to store each character of a document? Why?

1.4 Explain the difference between random access memory (RAM)
and read-only memory (ROM).

1.5 Explain the differences between a local-area network (LAN) and
a wide-area network (WAN). How do they work with each
other?

1.6 What is the total number of communication lines needed for a
fully connected point-to-point network of eight computers? Nine
computers? Ten computers? What is a general formula for deter-
mining this result?

1.7 Give examples of the two types of Java comments and explain
the differences between them.

1.8 Why are the following valid Java identifiers not considered good
identifiers?

a. q

b. totVal

c. theNextValueInTheList

ch01.qxp 3/13/06 1:50 PM Page 51

52 CHAPTER 1 computer systems

1.9 Identify each of the following situations as a compile-time error,
runtime error, or logical error.

a. multiplying two numbers when you meant to add them

b. dividing by zero

c. forgetting a semicolon at the end of a programming statement

d. spelling a word wrong in the output

e. producing inaccurate results

f. typing a { when you should have typed a (

1.10 How many bits are needed to store a color picture that is 400
pixels wide and 250 pixels high? Assume color is represented
using the RGB technique described in this chapter.

programming projects
1.1 Enter, compile, and run the following application:

public class Test
{

public static void main (String[] args)
{

System.out.println ("An Emergency Broadcast");
}

}

1.2 Introduce the following errors, one at a time, to the program
from the Programming Project 1.1. Record any error messages
that the compiler produces. Fix the previous error each time
before you introduce a new one. If no error messages are pro-
duced, explain why. Try to predict what will happen before you
make each change.

a. change Test to test

b. change Emergency to emergency

c. remove the first quotation mark in the string

d. remove the last quotation mark in the string

e. change main to man

f. change println to bogus

g. remove the semicolon at the end of the println statement

h. remove the last brace in the program

ch01.qxp 3/13/06 1:50 PM Page 52

answers to self-review questions 53

1.3 Write an application that prints, on separate lines, your name,
your birthday, your hobbies, your favorite book, and your
favorite movie. Label each piece of information in the output.

1.4 Write an application that prints the phrase Knowledge is
power:

a. on one line

b. on three lines, one word per line, with the words centered rela-
tive to each other

c. inside a box made up of the characters = and |

1.5 Write an application that prints the following diamond shape.
Don’t print any unneeded characters. (That is, don’t make any
character string longer than it has to be.)

*

*

1.6 Write an application that displays your initials in large block let-
ters. Make each large letter out of the corresponding regular
character. For example:

JJJJJJJJJJJJJJJ AAAAAAAAA LLLL
JJJJJJJJJJJJJJJ AAAAAAAAAAA LLLL

JJJJ AAA AAA LLLL
JJJJ AAA AAA LLLL
JJJJ AAAAAAAAAAA LLLL

J JJJJ AAAAAAAAAAA LLLL
JJ JJJJ AAA AAA LLLL
JJJJJJJJJJJ AAA AAA LLLLLLLLLLLLLL
JJJJJJJJJ AAA AAA LLLLLLLLLLLLLL

answers to self-review questions
1.1 The hardware of a computer system is its physical parts such as

a circuit board, monitor, or keyboard. Computer software are
the programs that are executed by the hardware and the data
that those programs use. In order to be useful, hardware requires
software and software requires hardware.

ch01.qxp 3/13/06 1:50 PM Page 53

54 CHAPTER 1 computer systems

1.2 The operating system provides a user interface and coordinates
the use of resources such as main memory and the CPU.

1.3 The information is broken into pieces, and those pieces are rep-
resented as numbers.

1.4 In general, N bits can represent 2N unique items. Therefore:

a. 2 bits can represent 4 items because 22 = 4.

b. 4 bits can represent 16 items because 24 = 16.

c. 5 bits can represent 32 items because 25 = 32.

d. 7 bits can represent 128 items because 27 = 128.

1.5 There are eight bits in a byte. Therefore:

a. 8 bytes = 8 * 8 bits = 64 bits

b. 2 KB = 2 * 1,024 bytes = 2,048 bytes = 2,048 * 8 bits = 16,384
bits

c. 4 MB = 4 * 1,048,576 bytes = 4,194,304 bytes = 4,194,304 *
8 bits = 33,554,432 bits

1.6 The two main hardware components are main memory and the
CPU. Main memory holds the currently active programs and
data. The CPU retrieves individual program instructions from
main memory, one at a time, and executes them.

1.7 A memory address is a number that identifies a particular mem-
ory location in which a value is stored.

1.8 Main memory is volatile, which means the information that is
stored in it will be lost if the power supply to the computer is
turned off. Secondary memory devices are nonvolatile; therefore
the information that is stored on them is retained even if the
power goes off.

1.9 A file server is a network computer that is dedicated to storing
and providing programs and data that are needed by many net-
work users.

1.10 Counting the number of unique connections in Figure 1.16,
there are 10 communication lines needed to fully connect a
point-to-point network of five computers. Adding a sixth com-
puter to the network will require that it be connected to the
original five, bringing the total to 15 communication lines.

ch01.qxp 3/13/06 1:50 PM Page 54

answers to self-review questions 55

1.11 The word Internet comes from the word internetworking, a con-
cept related to wide-area networks (WANs). An internetwork
connects one network to another. The Internet is a WAN.

1.12 Breaking down the parts of each URL:

a. chs is the name of the computer within the mcps.org domain,
which represents Montgomery County public schools in
Virginia. The org top-level domain indicates that it is an organ-
ization. This URL is requesting a file called math.htm from
within a subdirectory called Faculty.

b. java is the name of a computer (Web server) at the sun.com
domain, which represents Sun Microsystems, Inc. The com top-
level domain indicates that it is a commercial business. This
URL is requesting a file called index.html from within a sub-
directory called products.

1.13 High-level languages let a programmer write program instruc-
tions in English-like terms that are relatively easy to read and
use. However, in order to execute, a program must be translated
into machine language, which is a series of bits that are basically
unreadable by humans. A high-level language program must be
translated into machine language before it can be run.

1.14 Java bytecode is low-level Java source code. The Java compiler
translates the source code into bytecode, which can then be exe-
cuted using the Java interpreter. The bytecode might travel
across the Web before being executed by a Java interpreter that
is part of a Web browser.

1.15 White space is the spaces, tabs, and newline characters that sepa-
rate words and symbols in a program. The compiler ignores
extra white space, so it doesn’t affect execution. However, white
space can make a program readable to humans.

1.16 All of the identifiers shown are valid except 12345 (since an
identifier cannot begin with a number) and black&white (since
an identifier cannot contain the character &). The identifiers
RESULT and result are both valid, but should not be used
together in a program because they differ only by case. The
underscore character (as in answer_7) is a valid part of an iden-
tifier.

1.17 Syntax rules define how the symbols and words of a program-
ming language can be put together. Semantics determine what
will happen when that instruction is executed.

ch01.qxp 3/13/06 1:50 PM Page 55

56 CHAPTER 1 computer systems

1.18 A black-and-white picture can be drawn using a series of dots,
called pixels. Pixels with a value of 0 are displayed in white and
pixels with a value of 1 are displayed in black. A realistic black-
and-white photo can be produced on a computer screen using
thousands of pixels.

ch01.qxp 3/13/06 1:50 PM Page 56

