
objects, which is basic to

writing any program in an

object-oriented language such

as Java. We use objects to

work with character strings,

get information from the user,

do difficult calculations,

and format output. In the

Graphics Track of this

chapter, we explore the rela-

tionship between Java and the

Web, and delve into Java’s

abilities to work with color

and draw shapes.

◗ Define the difference between
primitive data and objects.

◗ Declare and use variables.

◗ Perform mathematical
computations.

◗ Create objects and use them.

◗ Explore the difference between a
Java application and a Java applet.

◗ Create graphical programs that
draw shapes.

chapter
objectives

This chapter explores the key elements
that we use in a program: objects and primitive

data. We learn to create and use

2
objects

and
primitive

data

ch02.qxp 3/13/06 1:57 PM Page 57

58 CHAPTER 2 objects and primitive data

2.0 an introduction to objects
As we stated in Chapter 1, Java is an object-oriented language. Object-
oriented programming ultimately requires a solid understanding of the fol-
lowing terms:

◗ object

◗ attribute

◗ method

◗ class

◗ encapsulation

◗ inheritance

◗ polymorphism

This section introduces these terms, giving an overview of object-oriented
principles in order to show you the big picture.

An object is a basic part of a Java program. A software object often
represents a real object in our problem area, such as a bank account.
Every object has a state and a set of behaviors. By “state” we mean
state of being—basic characteristics that currently define the object.
For example, part of a bank account’s state is its current balance. The

behaviors of an object are the activities associated with the object. Behaviors
associated with a bank account probably include the ability to make deposits
and withdrawals. This book focuses on developing software by defining
objects that interact with us and with each other.

In addition to objects, a Java program also manages primitive data.
Primitive data include common values such as numbers and characters. The
different kinds of primitive data are distinguished by their data type. A data
type defines a set of values and operations—what we can do with those val-
ues. We perform operations on primitive types using operators that are built
into the programming language. For example, the addition operator + is
used to add two numbers together. We discuss Java’s primitive data types
and their operators later in this chapter.

In contrast to primitive data, objects usually represent something more
complicated, and may contain primitive values as attributes. An object’s
attributes are the values it stores internally, representing its state. These val-
ues may be primitive data or other objects. For example, an object that rep-
resents a bank account may store a primitive numeric value representing the
account balance. It may contain other attributes, such as the name of the
account owner.

The information we manage in
a Java program is either
represented as primitive data
or as objects.

ke
y

co
nc

ep
t

ch02.qxp 3/13/06 1:57 PM Page 58

2.0 an introduction to objects 59

As we discussed in Chapter 1, a method is a group of programming state-
ments that is given a name so that we can use the method when we need it.
When a method is called, its statements are executed. A set of methods is
associated with an object. The methods of an object define its behaviors. To
define the ability to make a deposit into a bank account, we define a method
containing programming statements that will update the account balance
accordingly.

An object is defined by a class, which is like the data type of the object. A
class is the model or blueprint from which an object is created. It establishes
the kind of data an object of that type will hold and defines the methods that
represent the behavior of such objects or the operations that can be per-
formed on them. However, a class is not an object any more than a blueprint
is a house. In general, a class contains no space to store data. Each object has
space for its own data, which is why each object can have its own state.

Once a class has been defined, objects can be created from that class. For
example, once we define a class to represent the idea of a bank account, we
can create objects that represent individual bank accounts. Each bank
account object would keep track of its own balance. This is an example of
encapsulation, meaning that each object protects and manages its own infor-
mation. The only changes made to the state of the object should be done by
that object’s methods. We should design objects so that other objects cannot
“reach in” and change its state. The methods defined in the bank account
class would let us perform operations on individual bank account objects,
such as withdrawing money from a particular account.

Classes can be created from other classes using inheritance. That is, the
definition of one class can be based on another class that already exists.
Inheritance is a form of software reuse. We are taking advantage of the ways
some kinds of classes are alike. One class can be used to create several new
classes. These classes can then be used to create even more classes. This cre-
ates a family of classes, where characteristics defined in one class are inher-
ited by its children, which in turn pass them on to their children, and so on.
For example, we might create a family of classes for different types of bank
accounts. Common characteristics are defined in high-level classes, and spe-
cific differences are defined in child, or derived classes.

Polymorphism is the idea that we can refer to objects of different but
related types in the same way. It is a big help with designing solutions to
problems that deal with multiple objects.

Classes, objects, encapsulation, and inheritance are the ideas that make up
the world of object-oriented software. They are shown in Figure 2.1. We
don’t expect you to understand these ideas fully yet. This overview is

ch02.qxp 3/13/06 1:57 PM Page 59

60 CHAPTER 2 objects and primitive data

intended only to set the stage. This chapter focuses on how to use objects and
primitive data. In Chapter 4 we define our own objects by writing our own
classes and methods. In Chapter 7, we explore inheritance.

2.1 using objects
In the Lincoln program in Chapter 1 (Listing 1.1), we invoked a method
through an object as follows:

System.out.println ("Whatever you are, be a good one.");

The System.out object represents an output device or file, which by default
is the monitor screen. The object’s name is out and it is stored in the System
class. We explore that relationship in more detail later in the text.

The println method is a behavior of the System.out object, or a serv-
ice that the System.out object performs for us. Whenever we ask it to, the
object will print a string of characters to the screen. We can say that we send
the println message to the System.out object to ask that some text be
printed.

figure 2.1 Aspects of object-oriented software

John’s Bank Account

Balance: $5,257

Many encapsulated objects

can be created from one class

A class defines

a concept

Classes can be organized

into inheritance families

Bill’s Bank Account

Balance: $1,245,069

Mary’s Bank Account

Balance: $16,833

F

Bank Account

Account

Charge Account Bank Account

Savings Account Checking Account

ch02.qxp 3/13/06 1:57 PM Page 60

2.1 using objects 61

Each piece of data that we send to a method is called a parameter. In this
case, the println method takes only one parameter: the string of characters
to be printed.

The System.out object also provides another service we can use: the
print method. Let’s look at both of these methods in more detail.

the print and println methods
The difference between print and println is small but important. The
println method prints the information sent to it, then moves to the begin-
ning of the next line. The print method is like println, but does not go to
the next line when completed.

The program shown in Listing 2.1 is called Countdown, and it invokes
both the print and println methods.

listing
2.1

//**
// Countdown.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the difference between print and println.
//**

public class Countdown
{

//---
// Prints two lines of output representing a rocket countdown.
//---
public static void main (String[] args)
{

System.out.print ("Three... ");
System.out.print ("Two... ");
System.out.print ("One... ");
System.out.print ("Zero... ");

System.out.println ("Liftoff!"); // appears on first output line
System.out.println ("Houston, we have a problem.");

}
}

Three . . . Two . . . One . . . Zero . . . Liftoff!
Houston, we have a problem.

output

ch02.qxp 3/13/06 1:57 PM Page 61

62 CHAPTER 2 objects and primitive data

Carefully compare the output of the Countdown program to the program
code. Note that the word Liftoff is printed on the same line as the first few
words, even though it is printed using the println method. Remember that
the println method moves to the beginning of the next line after the infor-
mation passed to it is printed.

Often it is helpful to use graphics to show objects and their interaction.
Figure 2.2 shows part of what happens in the Countdown program. The
Countdown class, with its main method, is shown invoking the println
method of the System.out object.

The method name on the arrow in the diagram can be thought of as a mes-
sage sent to the System.out object. We could also have shown the informa-
tion that makes up the rest of the message: the parameters to the methods.

As we explore objects and classes in more detail in this book, we will use
these types of diagrams to explain object-oriented programs. The more com-
plex our programs get, the more helpful such diagrams become.

abstraction
An object is an abstraction, meaning that the details of how it works don’t
matter to the user of the object. We don’t really need to know how the
println method prints characters to the screen as long as we can count on
it to do its job.

Sometimes it is important to hide or ignore certain details. People can man-
age around seven (plus or minus two) pieces of information in short-term
memory. Beyond that, we start to lose track of some of the pieces. However,
if we group pieces of information together, we can manage those pieces as one
“chunk” in our minds. We don’t deal with all of the details in the chunk, just
the chunk itself. This way, we can deal with large quantities of information
by organizing them into chunks. An object organizes information and lets us
hide the details inside. An object is therefore a wonderful abstraction.

We use abstractions every day. Think about a car for a moment. You don’t
need to know how a four-cycle combustion engine works in order to drive a

figure 2.2 Invoking a method

Countdown

F

System.out

printlnmain

ch02.qxp 3/13/06 1:57 PM Page 62

2.2 string literals 63

car. You just need to know some basic operations: how to turn it on, how to
put it in gear, how to make it move with the pedals and steering wheel, and
how to stop it. These operations define the way a person interacts with the
car. They mask the details of what is happening inside the car that allow it
to function. When you’re driving a car, you’re not usually thinking about the
spark plugs igniting the gasoline that drives the piston that turns the crank-
shaft that turns the axle that turns the wheels. If you had to worry about all
of these details, you’d probably never be able to operate something as com-
plicated as a car.

At one time, all cars had manual transmissions. The driver had to under-
stand and deal with the details of changing gears with the stick shift.
When automatic transmissions were developed, the driver no longer
had to worry about shifting gears. Those details were hidden by rais-
ing the level of abstraction.

Of course, someone has to deal with the details. The car manufac-
turer has to know the details in order to design and build the car in
the first place. A car mechanic relies on the fact that most people don’t have
the expertise or tools necessary to fix a car when it breaks.

Thus, the level of abstraction must be appropriate for each situation.
Some people prefer to drive a manual transmission car. A race car driver, for
instance, needs to control the shifting manually for optimum performance.

Likewise, someone has to create the code for the objects we use. Soon we
will define our own objects, but for now, we can use objects that have been
defined for us already. Abstraction makes that possible.

2.2 string literals
A character string is an object in Java, defined by the class String. Because
strings are such an important part of computer programming, Java provides
something called a string literal, which appears inside double quotation
marks, as we’ve seen in previous examples. We explore the String class and
its methods in more detail later in this chapter. For now, let’s explore two
other useful details about strings: concatenation and escape sequences.

string concatenation
The program called Facts shown in Listing 2.2 contains several println
statements. The first one prints a sentence that is somewhat long and will not
fit on one line of the program. A character string in double quotation marks
cannot be split between two lines of code. One way to get around this

An abstraction hides details.
A good abstraction hides the
right details at the right time so
that we can manage
complexity.

key
concept

ch02.qxp 3/13/06 1:57 PM Page 63

64 CHAPTER 2 objects and primitive data

problem is to use the string concatenation operator, the plus sign (+). String
concatenation adds one string to another. The string concatenation operation
in the first println statement results in one large string that is passed to the
method and printed.

listing
2.2

//**
// Facts.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**

public class Facts
{

//---
// Prints various facts.
//---
public static void main (String[] args)
{

// Strings can be concatenated into one long string
System.out.println ("We present the following facts for your "

+ "extracurricular edification:");

System.out.println ();

// A string can contain numeric digits
System.out.println ("Letters in the Hawaiian alphabet: 12");

// A numeric value can be concatenated to a string
System.out.println ("Dialing code for Antarctica: " + 672);

System.out.println ("Year in which Leonardo da Vinci invented "
+ "the parachute: " + 1515);

System.out.println ("Speed of ketchup: " + 40 + " km per year");
}

}

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12
Dialing code for Antarctica: 672
Year in which Leonardo da Vinci invented the parachute: 1515
Speed of ketchup: 40 km per year

output

ch02.qxp 3/13/06 1:57 PM Page 64

2.2 string literals 65

Note that we don’t have to pass any information to the println method,
as shown in the second line of the Facts program. This call does not print
characters that you can see, but it does move to the next line of output. In
this case, the call to println passing in no parameters makes it “print” a
blank line.

The rest of the calls to println in the Facts program demonstrate
another interesting thing about string concatenation: Strings can be concate-
nated with numbers. Note that the numbers in those lines are not enclosed
in double quotes and are therefore not character strings. In these cases, the
number is automatically converted to a string, and then the two strings are
concatenated.

Because we are printing particular values, we simply could have included
the numeric value as part of the string literal, such as:

"Speed of ketchup: 40 km per year"

Digits are characters and can be included in strings as needed. We separate
them in the Facts program to demonstrate how to concatenate a string and
a number. This technique will be useful in upcoming examples.

As we’ve mentioned, the + operator is also used for arithmetic. Therefore,
what the + operator does depends on the types of data on which it operates.
If either or both of the operands of the + operator are strings, then string
concatenation is performed.

The Addition program shown in Listing 2.3 shows the distinction
between string concatenation and arithmetic addition. The Addition pro-
gram uses the + operator four times. In the first call to println, both +
operations perform string concatenation. This is because the operators exe-
cute left to right. The first operator concatenates the string with the first
number (24), creating a larger string. Then that string is concatenated with
the second number (45), creating an even larger string, which gets printed.

In the second call to println, parentheses are used to group the + oper-
ation with the two numbers. This forces that operation to happen first.
Because both operands are numbers, the numbers are added together, pro-
ducing the result 69. That number is then concatenated with the string, pro-
ducing a larger string that gets printed.

We revisit this type of situation later in this chapter when we learn the
rules that define the order in which operators get evaluated.

escape sequences
Because the double quotation mark (") is used in the Java language to indi-
cate the beginning and end of a string, we need a special way to print a

ch02.qxp 3/13/06 1:57 PM Page 65

66 CHAPTER 2 objects and primitive data

quotation mark. If we simply put it in a string ("""), the compiler gets con-
fused because it thinks the second quotation character is the end of the string
and doesn’t know what to do with the third one. This results in a compile-
time error.

To overcome this problem, Java defines several escape sequences to repre-
sent special characters. An escape sequence begins with the backslash char-
acter (\), and indicates that the character or characters that follow should be
interpreted in a special way. Figure 2.3 lists the Java escape sequences.

The program in Listing 2.4, called Roses, prints some text resembling a
poem. It uses only one println statement to do so, despite the fact that the
poem is several lines long. Note the escape sequences used throughout the
string. The \n escape sequence forces the output to a new line, and the \t
escape sequence represents a tab character. The \" escape sequence ensures
that the quotation mark is treated as part of the string, not the end of it, so
it can be printed as part of the output.

listing
2.3

//**
// Addition.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the difference between the addition and string
// concatenation operators.
//**

public class Addition
{

//---
// Concatenates and adds two numbers and prints the results.
//---
public static void main (String[] args)
{

System.out.println ("24 and 45 concatenated: " + 24 + 45);

System.out.println ("24 and 45 added: " + (24 + 45));
}

}

24 and 45 concatenated: 2445
24 and 45 added: 69

output

ch02.qxp 3/13/06 1:57 PM Page 66

2.2 string literals 67

figure 2.3 Java escape sequences

Escape Sequencep q Meaningg

\n

\"

\\

\b

\t

\r

\'

newline

double quote

backslash

backspace

tab

carriage return

single quote

listing
2.4

//**
// Roses.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of escape sequences.
//**

public class Roses
{

//---
// Prints a poem (of sorts) on multiple lines.
//---
public static void main (String[] args)
{

System.out.println ("Roses are red,\n\tViolets are blue,\n" +
"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
"So I'd rather just be friends\n\tAt this point in our " +
"relationship.");

}
}

Roses are red,
Violets are blue,

Sugar is sweet,
But I have "commitment issues",
So I'd rather just be friends
At this point in our relationship.

AP*
AP*
AP*

output

ch02.qxp 3/13/06 1:57 PM Page 67

2.3 variables and assignment
Most of the information in a program is represented by variables. Let’s look
at how we declare and use them in a program.

variables
A variable is a name for a location in memory used to hold a data
value. A variable declaration tells the compiler to reserve a portion of
main memory space large enough to hold the value. It also tells the
compiler what name to call the location.

Consider the program PianoKeys, shown in Listing 2.5. The first line of
the main method is the declaration of a variable named keys that holds a
number, or an integer (int), value. The declaration also gives keys an ini-
tial value of 88. If you don’t give an initial value for a variable, the value is
undefined. Most Java compilers give errors or warnings if you try to use a
variable before you’ve given it a value.

The keys variable, with its value, could be pictured as follows:

In the PianoKeys program, the string passed to the println method is
formed from three pieces. The first and third are string literals, and the sec-
ond is the variable keys. When the program gets to the variable it uses the
currently stored value. Because the value of keys is an integer, it is auto-
matically converted to a string so it can be concatenated with the first string.
Then the concatenated string is passed to println and printed.

Note that a variable declaration can have many variables of the same type
on one line. Each variable on the line can be declared with or without an ini-
tializing value. For example, the following declaration declares two vari-
ables, weight and total, and gives total a beginning value of 0.

int weight, total = 0:

the assignment statement
Let’s look at a program that changes the value of a variable. Listing 2.6
shows a program called Geometry. This program first declares an integer
variable called sides and initializes it to 7. It then prints out the current
value of sides.

The next line in main changes the value stored in the variable sides:

sides = 10;

keys 88

68 CHAPTER 2 objects and primitive data

A variable is a name for a
memory location used to hold a
value.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 68

2.3 variables and assignment 69

Local Variable Declaration

Variable Declarator

A variable declaration is a Type followed by a list of variables.
Each variable can be given a value computed from the Expression. If
the final modifier comes before the declaration, the variables are
declared as named constants whose values cannot be changed.

Examples:

int total;
double num1, num2 = 4.356, num3;
char letter = 'A', digit = '7';
final int MAX = 45;

Type Variable Declarator
,final

Identifier
= Expression

Array Initializer

listing
2.5

//**
// PianoKeys.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**

public class PianoKeys
{

//---
// Prints the number of keys on a piano.
//---
public static void main (String[] args)
{

int keys = 88;

System.out.println ("A piano has " + keys + " keys.");
}

}

A piano has 88 keys.

output

ch02.qxp 3/13/06 1:57 PM Page 69

70 CHAPTER 2 objects and primitive data

listing
2.6

//**
// Geometry.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**

public class Geometry
{

//---
// Prints the number of sides of several geometric shapes.
//---
public static void main (String[] args)
{

int sides = 7; // declaration with initialization
System.out.println ("A heptagon has " + sides + " sides.");

sides = 10; // assignment statement
System.out.println ("A decagon has " + sides + " sides.");

sides = 12;
System.out.println ("A dodecagon has " + sides + " sides.");

}
}

A heptagon has 7 sides.
A decagon has 10 sides.
A dodecagon has 12 sides.

output

Basic Assignment

The basic assignment statement uses the assignment operator (=) to
store the result of the Expression in the Identifier, usually a variable.

Examples:

total = 57;
count = count + 1;
value = (min / 2) * lastValue;

ExpressionIdentifier = ;

ch02.qxp 3/13/06 1:57 PM Page 70

This is called an assignment statement because it gives or assigns a value to
a variable. When the statement is executed, the expression on the right-hand
side of the assignment operator (=) is evaluated, and the result is stored in
the memory location indicated by the variable on the left-hand side. In this
example, the expression is simply a number, 10. We discuss expressions that
are more involved than this in the next section.

A variable can store only one value of its declared type. A new
value overwrites the old one. In this case, when the value 10 is
assigned to sides, the original value 7 is overwritten and lost forever,
as follows:

When a reference is made to a variable, such as when it is printed, the
value of the variable is not changed. This is the nature of computer mem-
ory: Accessing (reading) data leaves the values in memory intact, but writing
data replaces the old data with the new.

The Java language is strongly typed, meaning that we can’t assign
a value to a variable that is inconsistent with its declared type. Trying
to combine incompatible types will cause an error when you attempt
to compile the program. Therefore, the expression on the right-hand
side of an assignment statement must have the same type as the vari-
able on the left-hand side.

constants
Sometimes we use data that never changes—it is constant throughout a
program. For instance, we might write a program that deals with a theater
that can hold no more than 427 people. It is often helpful to give a con-
stant value a name, such as MAX_OCCUPANCY, instead of using a literal
value, such as 427, throughout the code. Literal values such as 427 are
sometimes referred to as “magic” numbers because their meaning in a pro-
gram is mystifying.

Constants are identifiers and are like variables except that they always
have the same value. In Java, if you write reserved word final before a
declaration, the identifier is made a constant. Uppercase letters are used for
constant names to help us tell them apart from regular variables, and
words are separated by the underscore character. For example, the constant
describing the maximum occupancy of a theater could be:

sidesAfter initialization: 7

After first assignment: 10sides

2.3 variables and assignment 71

Java is a strongly typed
language. Each variable has a
declared type and we cannot
assign a value of one type to a
variable of another type.

key
concept

A variable can store only one
value of its declared type.

key
concept

ch02.qxp 3/13/06 1:57 PM Page 71

72 CHAPTER 2 objects and primitive data

final int MAX_OCCUPANCY = 427;

The compiler will give you an error message if you try to change the value
of a constant once it has been given its initial value. This is another
good reason to use them. Constants prevent accidental coding errors
because the only place you can change their value is in the initial
assignment.

There is a third good reason to use constants. If a constant is used
throughout a program and its value needs to be changed, then you only have
to change it in one place. For example, if the capacity of the theater changes
(because of a renovation) from 427 to 535, then you have to change only one
declaration, and all uses of MAX_OCCUPANCY automatically reflect the
change. If you had used the literal 427 throughout the code, you would have
had to find and change each use. If you were to miss one or two, problems
would surely arise.

2.4 primitive data types
There are eight primitive data types in Java: four kinds of integers, two kinds
of floating point numbers, a character data type, and a boolean data type.
Everything else is represented using objects. Of the eight primitive types,
three are a part of the AP* subset. We look at these three (int, double, and
boolean) plus a fourth (char), in more detail. A discussion of the other
primitive types can be found on the Web site.

integers and floating points
Java has two basic kinds of numeric values: integers, which have no frac-
tional part, and floating points, which do. The primitive type int is an inte-

ger data type and double is a floating point data type. The numeric
types are signed, meaning that both positive and negative values can
be stored in them.

The int data type can be used to represent numbers in the range
–2,147,483,648 to 2,147,483,647. The double data type can rep-
resent numbers from approximately –1.7E+308 to 1.7E+308 with
15 significant digits.

A literal is a specific data value used in a program. The numbers used in
programs such as Facts (Listing 2.2) and Addition (Listing 2.3) and
PianoKeys (Listing 2.5) are all integer literals. Java assumes all integer lit-
erals are of type int. Likewise, Java assumes that all floating point literals

Java has two kinds of numeric
values: integers and floating
point. The primitive type int is
an integer data type and the
type double is a floating point
data type.

ke
y

co
nc

ep
t

Constants are like variables,
but they have the same value
throughout the program.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 72

2.4 primitive data types 73

are of type double. The following are examples of numeric variable decla-
rations in Java:

int answer = 42;
int number1, number2;
double delta = 453.523311903;

The specific numbers used, 42 and 453.523311903, are literals.

booleans
A boolean value, defined in Java using the reserved word boolean, has only
two values: true and false. A boolean variable usually tells us whether a
condition is true, but it can also represent any situation that has two states,
such as a lightbulb being on or off.

A boolean value cannot be changed to any other data type, nor can any
other data type be changed to a boolean value. The words true and false
are called boolean literals and cannot be used for anything else.

Here are some examples of boolean variable declarations in Java:

boolean flag = true;
boolean tooHigh, tooSmall, tooRough;
boolean done = false;

characters
Characters are another type of data. Note, however, that they are not part of
the AP* subset. Individual characters can be treated as separate data items,
or, as we’ve seen in several example programs, they can be combined to form
character strings.

A character literal is expressed in a Java program with single quotes, such
as 'b' or 'J' or ';'. Remember that string literals come in double quota-
tion marks, and that the String type is not a primitive data type in Java, it
is a class name. We discuss the String class in detail later in this chapter.

Note the difference between a digit as a character (or part of a string) and
a digit as a number (or part of a larger number). The number 602 is a
numeric value that can be used in an arithmetic calculation. But in the string
"602 Greenbriar Court" the 6, 0, and 2 are characters, just like the rest
of the characters that make up the string.

The characters are defined by a character set, which is just a list of char-
acters in a particular order. Each programming language has its own partic-
ular character set. Several character sets have been proposed, but only a few

ch02.qxp 3/13/06 1:57 PM Page 73

74 CHAPTER 2 objects and primitive data

have been used regularly over the years. The ASCII character set is a popu-
lar choice. ASCII stands for the American Standard Code for Information
Interchange. The basic ASCII set uses seven bits per character, which leaves
enough room to support 128 different characters, including:

◗ uppercase letters, such as 'A', 'B', and 'C'

◗ lowercase letters, such as 'a', 'b', and 'c'

◗ punctuation, such as the period ('.'), semicolon (';'), and comma
(',')

◗ the digits '0' through '9'

◗ the space character, ' '

◗ special symbols, such as the ampersand ('&'), vertical bar ('|'), and
backslash ('\')

◗ control characters, such as the carriage return, null, and end-of-text
marks

The control characters are sometimes called nonprinting or invisible
characters because they do not have a symbol that represents them. Yet they
can be stored and used in the same way as any other character. Many con-
trol characters have special meanings to certain software applications.

As computers became more popular all over the world, users needed char-
acter sets that included other language alphabets. ASCII was changed to use
eight bits per character, and the number of characters in the set doubled to
256. The new ASCII has many characters not used in English.

But even with 256 characters, the ASCII character set can’t represent all
the world’s alphabets, especially the Asian alphabets, which have many thou-
sands of characters, called ideograms. So the developers of the Java pro-
gramming language chose the Unicode character set, which uses 16 bits per
character, supporting 65,536 unique characters. The characters and symbols
from many languages are included in the Unicode definition. ASCII is a sub-
set of the Unicode character set. Appendix B discusses the Unicode character
set in more detail.

In Java, the data type char represents a single character. The following
are some examples of character variable declarations in Java:

char topGrade = 'A';
char symbol1, symbol2, symbol3;
char terminator = ';', separator = ' ';

ch02.qxp 3/13/06 1:57 PM Page 74

2.5 arithmetic expressions 75

2.5 arithmetic expressions
An expression is a combination of operators and operands, like a mathe-
matical expression. Expressions usually do a calculation such as addition or
division. The answer does not have to be a number, but it often is. The
operands might be literals, constants, variables, or other sources of data. The
way expressions are used is basic to programming.

For now we will focus on mathematical expressions. The usual
arithmetic operations include addition (+), subtraction (–), multipli-
cation (*), and division (/). Java also has another arithmetic opera-
tion: the remainder operator (%).The remainder operator returns the
remainder after dividing the second operand into the first. For exam-
ple, 17%4 equals 1 because 17 divided by 4 equals 4 with one remaining. The
remainder operator returns the 1. The sign of the result is the sign of the
numerator. So because 17 and 4 are both positive, the remainder is positive.
Likewise, –20%3 equals –2, and 10%–5 equals 0.

As you might expect, if either or both operands to any numeric operator
are floating point values, the result is a floating point value. However, the
division operator produces results that are somewhat more complicated. If
both operands are integers, the / operator performs integer division, mean-
ing that any fractional part of the result is discarded. If one or the other or
both operands are floating point values, the / operator performs floating
point division, and the fractional part of the result is kept. For example, in
the expression 10/4 both 10 and 4 are integers so integer division is per-
formed. 4 goes into 10 2.5 times but the fractional part (the .5) is discarded,
so the answer is 2, an integer. On the other hand, the results of 10.0/4 and
10/4.0 and 10.0/4.0 are all 2.5, because in these cases floating point divi-
sion is peformed.

operator precedence
Operators can be combined to create more complicated expressions. For
example, consider the following assignment statement:

result = 14 + 8 / 2;

The entire right-hand side of the assignment is solved, and then the answer
is stored in the variable. But what is the answer? It is 11 if the addition is
done first, or it is 18 if the division is done first. The order makes a big dif-
ference. In this case, the division is done before the addition, so the answer
is 18. You should note that in this and other examples we have used literal
values rather than variables to keep the expression simple. The order of oper-
ation is the same no matter what the operands are.

Expressions are combinations
of one or more operands and
the operators used to perform
a calculation.

key
concept

ch02.qxp 3/13/06 1:57 PM Page 75

76 CHAPTER 2 objects and primitive data

All expressions are solved according to an operator precedence hierarchy,
the rules that govern the order in which operations are done. In the case of
arithmetic operators, multiplication, division, and the remainder operator

are all performed before addition and subtraction. Otherwise arith-
metic operators are done left to right. Therefore we say the arithmetic
operators have a left-to-right association.

You can change the order, however, by using parentheses. For
instance, if we really wanted the addition to be performed first, we
could write the expression as follows:

result = (14 + 8) / 2;

Any expression in parentheses is done first. In complicated expressions, it
is a good idea to use parentheses even when it is not strictly necessary.

Parentheses can be placed one inside another, and the innermost expres-
sions are done first. Consider the following expression:

result = 3 * ((18 – 4) / 2);

In this example, the result is 21. First, the subtraction is done, because it is
inside the inner parentheses. Then, even though multiplication and division
usually would be done left to right, the division is done next because of the
outer parentheses. Finally, the multiplication is done.

After the arithmetic operations are complete, the answer is stored in the
variable on the left-hand side of the assignment operator (=), in this case the
variable result.

Figure 2.4 shows a table with the order of the arithmetic operators, paren-
theses, and the assignment operator. Appendix C includes a full precedence
table showing all Java operators.

A unary operator has only one operand, while a binary operator has two.
The + and – arithmetic operators can be either unary or binary. The binary
versions are for addition and subtraction, and the unary versions show pos-
itive and negative numbers. For example, –1 has a unary negation operator.

For an expression to be syntactically correct, the number of left parenthe-
ses must match the number of right parentheses and they must be properly
nested inside one another. The following examples are not valid expressions:

result = ((19 + 8) % 3) – 4); // not valid
result = (19 (+ 8 %) 3 – 4); // not valid

The program in Listing 2.7, called TempConverter, converts Celsius to
Fahrenheit. Note that the operands to the division operation are double to
ensure that the fractional part of the number is kept. The precedence rules
dictate that the multiplication happens before the addition, which is what we
want.

Java follows a set of rules that
govern the order in which
operators will be evaluated in
an expression. These rules are
called an operator precedence
hierarchy.

ke
y

co
nc

ep
t

ch02.qxp 3/13/06 1:57 PM Page 76

2.5 arithmetic expressions 77

figure 2.4 Precedence among some of the Java operators

1

2

3

4

+

–

*

/

%

+

–

+

=

unary plus

unary minus

multiplication

division

remainder

addition

subtraction

string concatenation

assignment

R to L

L to R

L to R

R to L

Precedence

Level Operator Operation Associates

F

listing
2.7

//**
// TempConverter.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of primitive data types and arithmetic
// expressions.
//**

public class TempConverter
{

//---
// Computes the Fahrenheit equivalent of a specific Celsius
// value using the formula F = (9/5)C + 32.
//---
public static void main (String[] args)
{

final int BASE = 32;
final double CONVERSION_FACTOR = 9.0 / 5.0;

int celsiusTemp = 24; // value to convert
double fahrenheitTemp;

fahrenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

System.out.println ("Celsius Temperature: " + celsiusTemp);
System.out.println ("Fahrenheit Equivalent: " + fahrenheitTemp);

}
}

Celsius Temperature: 24
Fahrenheit Equivalent: 75.2

output

ch02.qxp 3/13/06 1:57 PM Page 77

78 CHAPTER 2 objects and primitive data

data conversion
Because Java is a strongly typed language, each data value is associated with
a particular type. It is sometimes helpful or necessary to convert a data value
of one type to another type, but we must be careful that we don’t lose impor-
tant information in the process. For example, suppose a double variable
that holds the number 23.45 is converted to an int value. Because an int
cannot store the fractional part of a number, some information would be lost
in the conversion, and the number represented in the int would not keep its
original value.

A conversion between one primitive type and another falls into one of two
categories: widening conversions and narrowing conversions. Widening con-
versions are the safest because they usually do not lose information.
Converting from an int to a double is a widening conversion.

Narrowing conversions are more likely to lose information than
widening conversions are. Therefore, in general, they should be
avoided. Converting from a double to an int is a narrowing
conversion.

Note that boolean values are not mentioned in either widening or nar-
rowing conversions. A boolean value (true or false) cannot be converted to
any other primitive type and vice versa.

In Java, conversions can occur in three ways:

◗ assignment conversion

◗ arithmetic promotion

◗ casting

Assignment conversion happens when a value of one type is assigned to a
variable of another type and the value is converted to the new type. Only
widening conversions can be done this way. For example, if money is a
double variable and dollars is an int variable, then the following assign-
ment statement automatically converts the value in dollars to a double:

money = dollars;

So if dollars contains the value 25, after the assignment, money contains
the value 25.0. However, if we try to go the other way around and assign
money to dollars, the compiler will send us an error message telling us that
we are trying to do a narrowing conversion that could lose information. If
we really want to do this assignment, we have to do something called cast-
ing, which we’ll get to in a minute.

Avoid narrowing conversions
because they can lose
information.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 78

Arithmetic promotion happens automatically when certain arithmetic
operators need to change their operands in order to perform the operation.
For example, when a floating point value called sum is divided by an integer
value called count, the value of count becomes a floating point value auto-
matically, before the division takes place, producing a floating point result:

result = sum / count;

Casting is the most general form of conversion in Java. If a conversion can
be done at all in a Java program, it can be done using a cast. A cast is a type
name in parentheses, placed in front of the value to be converted. For exam-
ple, to convert money to an integer value, we could put a cast in front of it:

dollars = (int) money;

The cast returns the value in money, cutting off any fractional part. If money
contained the value 84.69, then after the assignment, dollars would con-
tain the value 84. Note, however, that the cast does not change the value in
money. After the assignment operation is complete, money still contains the
value 84.69.

We can use casting to round a floating point number to the nearest inte-
ger. Since casting to an int cuts off the fractional part of a number, we can
add 0.5 to a positive floating point value, cast it to an int, and get the effect
of rounding the value. If number is a double variable with a positive value,
then the expression (int)(number+0.5) is the nearest integer.

Casts are also helpful where we need to treat a value as another type. For
example, if we want to divide the integer value total by the integer value
count and get a floating point, we could do it as follows:

result = (double) total / count;

First, the cast operator returns a floating point version of the value in total.
This operation does not change the value in total. Then, count is treated
as a floating point value by arithmetic promotion. Now the division opera-
tor will do floating point division. If the cast had not been included, the
operation would have done integer division and cut the fraction off before
assigning it to result. Also note that because the cast operator has a higher
precedence than the division operator, the cast operates on the value of
total, not on the result of the division.

2.5 arithmetic expressions 79

ch02.qxp 3/13/06 1:57 PM Page 79

80 CHAPTER 2 objects and primitive data

2.6 enumerated types
Sometimes in a program we deal with values that come from a small, fixed
set, such as the days of the week or the seasons of the year. Java allows us to
create our own types to represent these values; these are called enumerated
types. An enumerated type can be used as the type of a variable when the
variable is declared. An enumerated type establishes all possible values of a
variable of that type by listing, or enumerating, them. The values may be any
valid identifiers.

For example, the following declaration defines an enumerated type called
Season whose possible values are winter, spring, summer, and fall:

enum Season {winter, spring, summer, fall}

There is no limit to the number of values that you can list for an enumer-
ated type. Once the type is defined, a variable can be declared of that type:

Season time;

The variable time is now restricted in the values it can take on. It
can hold one of the four Season values, but nothing else. Java enu-
merated types are considered to be type-safe, meaning that any
attempt to use a value other than one of the enumerated values will

result in a compile-time error.

The values are accessed through the name of the type. For example:

time = Season.spring;

Enumerated types can be quite helpful in some situations. For example,
suppose we wanted to represent the various letter grades a student could
earn. We might declare the following enumerated type:

enum Grade {A, B, C, D, F}

Any initialized variable that holds a Grade is guaranteed to have one of
those valid grades. That’s better than using a simple character or string vari-
able to represent the grade, which could take on any value.

Suppose we also wanted to represent plus and minus grades, such as A–
and B+. We couldn’t use A– or B+ as values, because they are not valid iden-
tifiers (the characters '-' and '+' cannot be part of an identifier in Java).
However, the same values could be represented using the identifiers Aminus,
Bplus, etc.

Listing 2.8 shows a program called IceCream that declares an enumer-
ated type and uses it. Enumerated types are actually a special kind of class,

Enumerated types are
type-safe, ensuring that invalid
values will not be used.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 80

2.6 enumerated types 81

and this means they may not be defined inside a method. They can be defined
either at the class level (within the class but outside a method), as in this
example, or at the outermost level.

listing
2.8

//**
// IceCream.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of enumerated types.
//**

public class IceCream
{

enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,
rockyRoad, mintChocolateChip, cookieDough}

//---
// Creates and uses variables of the Flavor type.
//---
public static void main (String[] args)
{

Flavor cone1, cone2, cone3;

cone1 = Flavor.rockyRoad;
cone2 = Flavor.chocolate;

System.out.println ("cone1: " + cone1);
System.out.println ("cone2: " + cone2);

cone3 = cone1;

System.out.println ("cone3: " + cone3);
}

}

cone1: rockyRoad
cone2: chocolate
cone3: rockyRoad

output

ch02.qxp 3/13/06 1:57 PM Page 81

82 CHAPTER 2 objects and primitive data

2.7 creating objects
A variable can hold either a primitive value or a reference to an object. Like
variables that hold primitive types, a variable that holds an object reference
must be declared. A class is used to define an object, and the class name can
be thought of as the type of an object. The declarations of object references
are structured like the declarations of primitive variables.

Consider the following two declarations:

int num;
String name;

The first declaration creates a variable that holds an integer value, as we’ve
seen many times before. The second declaration creates a String variable
that holds a reference to a String object. An object variable doesn’t hold an
object itself, it holds the address of an object.

Initially, the two variables declared above don’t contain any data. We say
they are uninitialized, which can be depicted as follows:

It is always important to make sure a variable is initialized before using it.
For an object variable, that means we must make sure it refers to a valid
object prior to using it. In most situations the compiler will issue an error if
you attempt to use a variable before initializing it.

Note that, although we’ve declared a String reference variable, no
String object actually exists yet. We create an object with the new operator,
and this is called instantiation. An object is an instance of a particular class.
The following two assignment statements give values to the two variables
declared above:

num = 42;
name = new String(“James Gosling”);

After the new operator creates the object, a constructor helps set it
up. A constructor has the same name as the class and is like a method.
In this example, the parameter to the constructor is a string literal
("James Gosling"), which spells out the characters that the string

object will hold. After these assignments are executed, the variables can be
depicted as:

num

name

–

–

The new operator returns a
reference to a newly created
object.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 82

2.7 creating objects 83

We can declare the object reference variable and create the object itself in
one step by initializing the variable in the declaration, just as we do with
primitive types:

String name = new String ("James Gosling");

After an object has been instantiated, we use the dot operator to get its
methods. We’ve used the dot operator many times in previous programs,
such as in calls to System.out.println. The dot operator is added right
after the object reference and is followed by the method being invoked. For
example, to invoke the length method defined in the String class, we use
the dot operator on the name reference variable:

count = name.length();

The length method does not take any parameters, but we need the paren-
theses to show that length is a method. Some methods produce a value that
is returned. The length method will return the length of the string (the
number of characters it contains). In this example, the returned value is
assigned to the variable count. For the string "James Gosling", the
length method returns 13 (this includes the space between the first and last
names). Some methods do not return a value.

An object reference variable (such as name) stores the address where the
object is stored in memory. We learn more about object references, instanti-
ation, and constructors in later chapters.

the String class
Let’s look at the String class in more detail. Strings in Java are objects
represented by the String class. Figure 2.5 lists some of the more useful
methods of the String class. The method headers indicate the type of
information that must be passed to the method. The type shown in front
of the method name is called the return type of the method. This is the type
of information that will be returned, if anything. A return type of void
means that the method does not return a value. The returned value can be
used in the calling method as needed.

Once a String object is created, its value cannot be lengthened or short-
ened, nor can any of its characters change. Thus we say that a String object
is immutable. We can, however, create new String objects that have the
new version of the original string’s value.

num 42

name “James Gosling”

ch02.qxp 3/13/06 1:57 PM Page 83

figure 2.5 Some methods of the String class

String (String str)
Constructor: creates a new string object with the same characters as str.

char charAt (int index)
Returns the character at the specified index.

int compareTo (String str)
Returns a number indicating whether this string comes before (a negative
return value), is equal to (a zero return value), or comes after (a positive
return value), the string str.

String concat (String str)
Returns a new string made up of this string added to (concatenated with) str.

boolean equals (String str)
Returns true if this string contains the same characters as str (including upper
or lowercase) and false if it does not.

boolean equalsIgnoreCase (String str)
Returns true if this string contains the same characters as str (ignoring upper
and lowercase) and false if it does not.

int indexOf (String str)

 Returns the position of the first character in the first occurrence of str in this
 string.

int length ()
Returns the number of characters in this string.

String replace (char oldChar, char newChar)
Returns a new string that is identical with this string except that every
oldChar is replaced by newChar.

String substring (int offset, int endIndex)
 Returns a new string that is a subset of this string starting at index offset
 and ending with the character at position endIndex-1.

String substring (int offset)
Returns a new string that starts at index offset and extends to the end
of the string.

String toLowerCase ()
Returns a new string that is the same as this string except all uppercase
letters are changed to lowercase.

String toUpperCase ()
Returns a new string that is the same as this string except all lowercase
letters are changed to uppercase.

F

AP*

AP*

AP*

AP*

AP*

AP*

84 CHAPTER 2 objects and primitive data

Notice that some of the String methods refer to the index of a particu-
lar character. The index is a character’s position in the string. The index of
the first character in a string is zero, the index of the next character is one,
and so on. Therefore in the string "Hello", the index of the character 'H'
is zero,'e' is one, and so on.

ch02.qxp 3/13/06 1:57 PM Page 84

2.7 creating objects 85

Several String methods are used in the program called
StringMutation, shown in Listing 2.9.

Figure 2.6 shows the String objects that are created in Listing 2.9, the
StringMutation program. Compare this diagram to the program code and
the output. Keep in mind this program creates five separate String objects
using various methods of the String class.

Even though they are not primitive types, strings are so basic and so often
used that Java defines string literals in double quotation marks, as we’ve seen
in various examples. This is a shortcut notation. Whenever a string literal
appears, a String object is created. Therefore the following declaration is
valid:

String name = "James Gosling";

That is, for String objects, we don’t need the new operator and the call to
the constructor. In most cases, we will use this simplified syntax.

wrapper classes
As we’ve been discussing, there are two categories of data in Java: primitive
values and objects. Sometimes we’ll find ourselves in a situation where we’ve
got primitive data but objects are required. For example, as we will see in
later chapters, there are container objects that hold other objects, and they
cannot hold primitive types. In cases like this we need to “wrap” a primitive
value into an object.

All of the primitive types in Java have wrapper classes. These are classes
that let you create objects representing primitive data. The Integer class

figure 2.6 The String objects created in the StringMutation program

phrase mutation1

mutation2 mutation3

mutation4

"CHANGE IS INEVITABLE,

EXCEPT FROM VENDING

MACHINES"

"Change is inevitable,

except from vending

machines."
"Change is inevitable"

"CHANGX IS INXVITABLX,

XXCXPT FROM VXNDING

MACHINXS"

"NGX IS INXVITABLX,

XXCXPT F"

ch02.qxp 3/13/06 1:57 PM Page 85

86 CHAPTER 2 objects and primitive data

wraps (represents) an int and the Double class wraps (represents) a
double. We can create Integer and Double objects from primitive
data by passing an int or double value to the constructor of

listing
2.9

//**
// StringMutation.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of the String class and its methods.
//**

public class StringMutation
{

//---
// Prints a string and various mutations of it.
//---
public static void main (String[] args)
{

String phrase = new String ("Change is inevitable");
String mutation1, mutation2, mutation3, mutation4;

System.out.println ("Original string: \"" + phrase + "\"");
System.out.println ("Length of string: " + phrase.length());

mutation1 = phrase.concat (", except from vending machines.");
mutation2 = mutation1.toUpperCase();
mutation3 = mutation2.replace ('E', 'X');
mutation4 = mutation3.substring (3, 30);

// Print each mutated string
System.out.println ("Mutation #1: " + mutation1);
System.out.println ("Mutation #2: " + mutation2);
System.out.println ("Mutation #3: " + mutation3);
System.out.println ("Mutation #4: " + mutation4);

System.out.println ("Mutated length: " + mutation4.length());
}

}

Original string: "Change is inevitable"
Length of string: 20
Mutation #1: Change is inevitable, except from vending machines.
Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.
Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.
Mutation #4: NGX IS INXVITABLX, XXCXPT F
Mutated length: 27

output

A wrapper class allows a
primitive value to be used as
an object.ke

y
co

nc
ep

t

ch02.qxp 3/13/06 1:57 PM Page 86

2.7 creating objects 87

Integer or Double, respectively. For example, the following declaration
creates an Integer object representing the integer 45:

Integer number = new Integer (45);

Once this statement is executed, the number object represents the integer
45 as an object. It can be used wherever an object is needed in a program
rather than a primitive type.

Like strings, Integer and Double objects are immutable. Once an
Integer or Double object is created, its value cannot be changed. Figures
2.7 and 2.8 list the methods on the Integer and Double classes that are
part of the AP* subset.

figure 2.7 Some methods of the Integer class

Integer (int value)

Constructor: creates a new integer object representing the number value.

int compareTo (Object other)

Returns a number indicating whether this integer is less than (a negative
return value), equal to (a zero return value), or greater than (a positive return
value), the integer other.

boolean equals (Object other)

Returns true if this integer has the same value as the integer other.

int intValue()

Returns the value of this integer as an int.

String toString ()

Returns a String object representing this integer’s value.

F

AP*

figure 2.8 Some methods of the Double class

Double (double value)

Constructor: creates a new double object representing the number value.

int compareTo(Object other)

Returns a number indicating whether this double is less than (a negative
return value), equal to (a zero return value), or greater than (a positive return
value), the double other.

double doubleValue()

Returns the value of this double as a double.

boolean equals(Object other)

Returns true if this double has the same value as the double other.

String toString ()

Returns a String object representing this double’s value.

AP*

ch02.qxp 3/13/06 1:57 PM Page 87

autoboxing
Autoboxing is the automatic conversion between a primitive value
and a corresponding wrapper object. For example, in the following
code, an int value is assigned to an Integer object reference
variable:

Integer obj1;
int num1 = 69;
obj1 = num1; // automatically creates an Integer object

The reverse conversion, called unboxing, also occurs automatically when
needed. For example:

Integer obj2 = new Integer(69);
int num2;
num2 = obj2; // automatically extracts the int value

Assignments between primitive types and object types are generally
incompatible. The ability to autobox occurs only between primitive types
and corresponding wrapper classes. In any other case, attempting to assign a
primitive value to an object reference variable, or vice versa, will cause a
compile-time error. Autoboxing is not part of the AP* subset.

2.8 class libraries and packages
A class library is a set of classes that supports the development of pro-
grams. A compiler often comes with a class library. You can also get
class libraries separately through third-party vendors. The classes in a
class library have methods that are often valuable to a programmer
because of their special functions. In fact, programmers often depend

on the methods in a class library and begin to think of them as part of the
language, even though technically, they are not in the language definition.

The String class, for instance, is not part of the Java language. It is part
of the Java standard class library. The classes that make up the library were
created by employees at Sun Microsystems, the people who created the Java
language.

The class library is made up of several sets of related classes, which are
sometimes called Java APIs, or Application Programmer Interfaces. For
example, we may refer to the Java Database API when we’re talking about
the set of classes that help us write programs that interact with a database.
Another example of an API is the Java Swing API, which is a set of classes
used in a graphical user interface (GUI). Sometimes the entire standard
library is referred to as the Java API.

88 CHAPTER 2 objects and primitive data

Autoboxing provides automatic
conversions between primitive
values and corresponding
wrapper objects.

ke
y

co
nc

ep
t

The Java standard class library
is a useful set of classes that
anyone can use when writing
Java programs.

ke
y

co
nc

ep
t

ch02.qxp 3/13/06 1:57 PM Page 88

2.8 class libraries and packages 89

The classes of the Java standard class library are also grouped into
packages, which, like the APIs, let us group related classes by one
name. Each class is part of a particular package. The String class,
for example, is part of the java.lang package. The System class is
part of the java.lang package as well. Figure 2.9 shows how the library is
organized into packages.

The package organization is more fundamental and language based than
the API names. The groups of classes that make up a given API might cross
packages. We mostly refer to classes in terms of their package organization
in this text.

Figure 2.10 describes some of the packages that are part of the Java stan-
dard class library. These packages are available on any type of computer sys-
tem that supports Java software development. Many of these packages are
very sophisticated and are not used in the development of basic programs.

Many classes of the Java standard class library are discussed throughout
this book. The classes that are part of the AP* subset are found in the
java.lang and java.util packages. Appendix D serves as a general ref-
erence for all of the Java classes in the AP* subset.

A package is a Java language
element used to group related
classes under a common name.

key
concept

figure 2.9 Classes organized into packages in the
Java standard class library

Package

F

Java Standard Class Library

Class

ch02.qxp 3/13/06 1:57 PM Page 89

90 CHAPTER 2 objects and primitive data

the import declaration
We can use the classes of the package java.lang when we write a program.
To use classes from any other package, however, we must either fully qualify
the reference, or use an import declaration.

When you want to use a class from a class library in a program, you could
use its fully qualified name, including the package name, every time it is ref-
erenced. For example, every time you want to refer to the Random class that
is defined in the java.util package, you can write java.util.Random.
However, typing the whole package and class name every time it is needed
quickly gets tiring. An import declaration makes this easier.

The import declaration identifies the packages and classes that will be
used in a program so that the fully qualified name is not necessary with each
reference. The following is an example of an import declaration:

import java.util.Random;

figure 2.10 Some packages in the Java standard class library

Package Provides support to

java.applet

java.awt

java.beans

java.io

java.lang

java.math

java.net

java.rmi

java.security

Create programs (applets) that are easily transported across the Web.

Draw graphics and create graphical user interfaces;

AWT stands for Abstract Windowing Toolkit.

Define software components that can be easily combined

into applications.

Perform many kinds of input and output functions.

General support; it is automatically imported into all Java programs.

Perform calculations.

Communicate across a network.

Create programs that can be distributed across many computers;

RMI stands for Remote Method Invocation.

Enforce security restrictions.

java.sql

java.text

java.util

javax.swing

Interact with databases;

SQL stands for Structured Query Language.

Format text for output.

General utilities.

Create graphical user interfaces that extend the

AWT capabilities.

javax.xml.parsers Process XML documents; XML stands for eXtensible Markup Language.

F

ch02.qxp 3/13/06 1:57 PM Page 90

2.8 class libraries and packages 91

This declaration says that the Random class of the java.util package may
be used in the program. Once you make this import declaration you only need
to use the simple name Random when referring to that class in the program.

Another form of the import declaration uses an asterisk (*) to indicate
that any class in the package might be used in the program. For example, the
following declaration lets you use all classes in the java.util package in
the program without having to type in the package name:

import java.util.*;

Once a class is imported, it is as if its code has been brought into the pro-
gram. The code is not actually moved, but that is the effect.

The classes of the java.lang package are automatically imported
because they are like basic extensions to the language. Therefore, any class
in the java.lang package, such as String, can be used without an explicit
import statement. It’s as if all programs automatically contain the follow-
ing statement:

import java.lang.*;

Let’s take a look at a few classes from the java.util package which we
will find quite useful.

the Random class
You will often need random numbers when you are writing software. Games
often use a random number to represent the roll of a die or the shuffle of a
deck of cards. A flight simulator may use random numbers to decide how
often a simulated flight has engine trouble. A program designed to help high
school students prepare for the SATs may use random numbers to choose the
next question to ask.

The Random class uses a pseudorandom number generator. A random
number generator picks a number at random out of a range of values. A
program that does this is called pseudorandom, because a program can’t
really pick a number randomly. A pseudorandom number generator might
do a series of complicated calculations, starting with an initial seed value,
and produce a number. Though they are technically not random (because
they are calculated), the numbers produced by a pseudorandom number
generator usually seem to be random, at least random enough for most sit-
uations. Figure 2.11 lists the methods of the Random class that are part of
the AP* subset.

ch02.qxp 3/13/06 1:57 PM Page 91

figure 2.11 Some methods of the Random class

Random ()

Constructor: creates a new pseudorandom number generator.

double nextDouble ()

Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt (int num)

Returns a random number in the range 0 to num-1.

F

92 CHAPTER 2 objects and primitive data

The nextInt method is called with a single integer value as a parameter.
If we pass a value, say N, to nextInt, the method returns a value from 0 to
N–1. For example, if we pass in 100, we’ll get a return value that is greater
than or equal to 0 and less than or equal to 99.

Note that the value that we pass to the nextInt method is also the num-
ber of possible values we can get in return. We can shift the range by adding
or subtracting the proper amount. To get a random number in the range 1 to
6, we can call nextInt(6) to get a value from 0 to 5, and then add 1.

The nextDouble method of the Random class returns a double value
that is greater than or equal to 0.0 and less than 1.0. If we want, we can use
multiplication to scale the result, cast it into an int value to cut off the frac-
tional part, then shift the range as we do with integers.

The program shown in Listing 2.10 produces several random numbers.

Import Declaration

An import declaration specifies an Identifier (the name of a class)
that will be referenced in a program, and the Name of the package in
which it is defined. The * wildcard indicates that any class from a
particular package may be referenced.

Examples:

import java.util.*;
import cs1.Keyboard;

import Name Identifier.

*

;

AP*

ch02.qxp 3/13/06 1:57 PM Page 92

2.8 class libraries and packages 93

listing
2.10

//**
// RandomNumbers.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the import statement, and the creation of pseudo-
// random numbers using the Random class.
//**

import java.util.Random;

public class RandomNumbers
{

//---
// Generates random numbers in various ranges.
//---
public static void main (String[] args)
{

Random generator = new Random();
int num1;
double num2;

num1 = generator.nextInt(10);
System.out.println ("From 0 to 9: " + num1);

num1 = generator.nextInt(10) + 1;
System.out.println ("From 1 to 10: " + num1);

num1 = generator.nextInt(15) + 20;
System.out.println ("From 20 to 34: " + num1);

num1 = generator.nextInt(20) - 10;
System.out.println ("From -10 to 9: " + num1);

num2 = generator.nextDouble();
System.out.println ("A random double [between 0-1]: " + num2);

num2 = generator.nextDouble() * 6; // 0.0 to 5.999999
num1 = (int) num2 + 1;
System.out.println ("From 1 to 6: " + num1);

}
}

From 0 to 9: 6
From 1 to 10: 4
From 20 to 34: 30
From -10 to 9: -4
A random double [between 0-1]: 0.052495003
From 1 to 6: 6

output

ch02.qxp 3/13/06 1:57 PM Page 93

94 CHAPTER 2 objects and primitive data

the Math class
Some methods can be invoked through their class name, without having to
instantiate an object of the class first. These are called class methods or static
methods. Let’s look at an example.

The Math class lets us do a large number of basic mathematical functions.
The Math class is part of the Java standard class library and is defined in the
java.lang package. Figure 2.12 lists several of its methods.

figure 2.12 Some methods of the Math class

static int abs (int num)�
static double abs (double num)

Returns the absolute value of num.

static double acos (double num)

static double asin (double num)

static double atan (double num)

Returns the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)

Returns the angle cosine, sine, or tangent of angle, which is measured in
radians.

static double ceil (double num)

Returns the ceiling of num, which is the smallest whole number greater than or
equal to num.

static double exp (double power)

Returns the value e raised to the specified power.

static double floor (double num)

Returns the floor of num, which is the largest whole number less than or equal
to num.

static double pow (double num, double power)

Returns the value num raised to the specified power.

static double random ()

Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (double num)

Returns the square root of num, which must be positive.

AP*

AP*

AP*

AP*

ch02.qxp 3/13/06 1:57 PM Page 94

2.9 interactive programs 95

The reserved word static indicates that the method can be invoked
through the name of the class. For example, a call to Math.abs(total) will
return the absolute value of the number stored in total. A call to
Math.pow(7, 4) will return 7 raised to the fourth power. Note that you can
pass integer values to a method that accepts a double parameter. This is a
form of assignment conversion, which we discussed earlier in this chapter.

We’ll make use of some Math methods in examples in the next section.

2.9 interactive programs
It is often useful to design a program to read data from the user interactively
during execution. That way, new results can be computed each time the pro-
gram is run, depending on the data that is entered.

the Scanner class
The Scanner class, which is part of the standard Java class library in
the java.util package, provides convenient methods for reading
input values of various types. The input could come from various
sources, including data typed interactively by the user or data stored
in a file. The Scanner class can also be used to parse a character
string into separate pieces. Figure 2.13 lists some of the methods provided by
the Scanner class.

We must first create a Scanner object in order to invoke its methods. The
following declaration creates a Scanner object that reads input from the
keyboard:

Scanner scan = new Scanner (System.in);

This declaration creates a variable called scan that represents a Scanner
object. The object itself is created by the new operator and a call to the con-
structor to set up the object. The Scanner constructor accepts a parameter
that indicates the source of the input. The System.in object represents the
standard input stream, which by default is the keyboard.

Unless specified otherwise, a Scanner object assumes that white space
characters (space characters, tabs, and new lines) are used to separate the ele-
ments of the input, called tokens, from each other. These characters are
called the input delimiters. The set of delimiters can be changed if the input
tokens are separated by characters other than white space.

The next method of the Scanner class reads the next input token as a
string and returns it. Therefore, if the input consisted of a series of words

The Scanner class provides
methods for reading input of
various types from various
sources.

key
concept

ch02.qxp 3/13/06 1:57 PM Page 95

96 CHAPTER 2 objects and primitive data

separated by spaces, each call to next would return the next word. The
nextLine method reads all of the input until the end of the line is found,
and returns it as one string.

The program Echo, shown in Listing 2.11, simply reads a line of text
typed by the user, stores it in a variable that holds a character string, then
echoes it back to the screen.

A Scanner object processes the input one token at a time, based on the
methods used to read the data and the delimiters used to separate the input
values. Therefore, multiple values can be put on the same line of input or can
be separated over multiple lines, as appropriate for the situation.

figure 2.13 Some methods of the Scanner class

Scanner (InputStream source)

Scanner (File source)

Scanner (String source)

 Constructors: sets up the new scanner to scan values from the specified source.

String next()

 Returns the next input token as a character string.

String nextLine()

 Returns all input remaining on the current line as a character string.

boolean nextBoolean()

byte nextByte()

double nextDouble()

float nextFloat()

int nextInt()

long nextLong()

short nextShort()

 Returns the next input token as the indicated type. Throws

 InputMismatchException if the next token is inconsistent with the type.

boolean hasNext()

 Returns true if the scanner has another token in its input.

Scanner useDelimiter (String pattern)

 Sets the scanner’s delimiting pattern.

ch02.qxp 3/13/06 1:57 PM Page 96

2.9 interactive programs 97

Various Scanner methods such as nextInt and nextDouble are pro-
vided to read data of particular types. The Quadratic program, shown in
Listing 2.12, uses the Scanner and Math classes. Recall that a quadratic
equation has the following general form:

ax2 + bx + c

The Quadratic program reads values that represent the coefficients in a
quadratic equation (a, b, and c), and then evaluates the quadratic formula to
determine the roots of the equation. The quadratic formula is:

roots = –b ± Ïbw2w–w 4wawcw}}2a

listing
2.11

//**
// Echo.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of the nextLine method of the Scanner class
// to read a string from the user.
//**

import java.util.Scanner;

public class Echo
{

//---
// Reads a character string from the user and prints it.
//---
public static void main (String[] args)
{

String message;
Scanner scan = new Scanner (System.in);

System.out.println ("Enter a line of text:");

message = scan.nextLine();

System.out.println ("You entered: \"" + message + "\"");
}

}

Enter a line of text:
Set your laser printer on stun!
You entered: "Set your laser printer on stun!"

output

ch02.qxp 3/13/06 1:57 PM Page 97

98 CHAPTER 2 objects and primitive data

listing
2.12

//**
// Quadratic.java Author: Lewis/Loftus/Cocking
//
// Demonstrates a calculation based on user input.
//**

import java.util.Scanner;

public class Quadratic
{

//---
// Determines the roots of a quadratic equation.
//---
public static void main (String[] args)
{

int a, b, c; // ax^2 + bx + c
Scanner scan = new Scanner(System.in);

System.out.print ("Enter the coefficient of x squared: ");
a = scan.nextInt();

System.out.print ("Enter the coefficient of x: ");
b = scan.nextInt();

System.out.print ("Enter the constant: ");
c = scan.nextInt();

// Use the quadratic formula to compute the roots.
// Assumes a positive discriminant.

double discriminant = Math.pow(b, 2) - (4 * a * c);
double root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);
double root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

System.out.println ("Root #1: " + root1);
System.out.println ("Root #2: " + root2);

}
}

Enter the coefficient of x squared: 3
Enter the coefficient of x: 8
Enter the constant: 4
Root #1: -0.6666666666666666
Root #2: -2.0

output

ch02.qxp 3/13/06 1:57 PM Page 98

2.10 formatting output 99

In Chapter 5 we use the Scanner class to read input from a data file and
modify the delimiters it uses to parse the data.

2.10 formatting output
The NumberFormat class and the DecimalFormat class are used to format
information so that it looks right when printed or displayed. They are both
part of the Java standard class library and are defined in the java.text
package. These classes are not part of the AP* subset.

the NumberFormat class
The NumberFormat class lets you format numbers. You don’t instantiate a
NumberFormat object using the new operator. Instead, you ask for an object
from one of the methods that you can invoke through the class itself. We
haven’t covered the reasons for this yet, but we will explain them later.
Figure 2.14 lists some of the methods of the NumberFormat class.

Two of the methods in the NumberFormat class,
getCurrencyInstance and getPercentInstance, return an object that
is used to format numbers. The getCurrencyInstance method returns a
formatter for money values. The getPercentInstance method returns an
object that formats a percentage. The format method is called through a
formatter object and returns a String that contains the formatted number.

The Price program shown in Listing 2.13 uses both types of formatters.
It reads in a sales transaction and computes the final price, including tax.

figure 2.14 Some methods of the NumberFormat class

String format (double number)

Returns a string containing the specified number formatted according to this
object’s pattern.

static NumberFormat getCurrencyInstance()

Returns a NumberFormat object that represents a currency format for the
current locale.

static NumberFormat getPercentInstance()

Returns a NumberFormat object that represents a percentage format for the
current locale.

F

ch02.qxp 3/13/06 1:57 PM Page 99

100 CHAPTER 2 objects and primitive data

listing
2.13

//**
// Price.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of various Scanner and NumberFormat
// methods.
//**

import java.util.Scanner;
import java.text.NumberFormat;

public class Price
{

//---
// Calculates the final price of a purchased item using values
// entered by the user.
//---
public static void main (String[] args)
{

final double TAX_RATE = 0.06; // 6% sales tax

int quantity;
double subtotal, tax, totalCost, unitPrice;
Scanner scan = new Scanner(System.in);

System.out.print ("Enter the quantity: ");
quantity = scan.nextInt();

System.out.print ("Enter the unit price: ");
unitPrice = scan.nextDouble();

subtotal = quantity * unitPrice;
tax = subtotal * TAX_RATE;
totalCost = subtotal + tax;

// Print output with appropriate formatting
NumberFormat money = NumberFormat.getCurrencyInstance();
NumberFormat percent = NumberFormat.getPercentInstance();

System.out.println ("Subtotal: " + money.format(subtotal));
System.out.println ("Tax: " + money.format(tax) + " at "

+ percent.format(TAX_RATE));
System.out.println ("Total: " + money.format(totalCost));

}
}

ch02.qxp 3/13/06 1:57 PM Page 100

2.10 formatting output 101

the DecimalFormat class
Unlike the NumberFormat class, the DecimalFormat class is instantiated in
the usual way using the new operator. Its constructor takes a string that rep-
resents the formatting pattern. We can then use the format method to
format a particular value. Later on, if we want to change the formatting pat-
tern, we can call the applyPattern method. Figure 2.15 describes these
methods.

The pattern defined by the string that is passed to the DecimalFormat
constructor gets pretty complicated. Different symbols are used to represent
different formatting guidelines. The pattern defined by the string "0.###",
for example, tells us that at least one digit should be printed to the left of the
decimal point and should be a zero if that part of the number is zero. It also
indicates that the value to the right of the decimal point should be rounded
to three digits. This pattern is used in the CircleStats program shown in
Listing 2.14, which reads the radius of a circle from the user and computes
its area and circumference. The final zero, such as in 78.540, is not printed.

listing
2.13 continued

Enter the quantity: 5
Enter the unit price: 3.87
Subtotal: $19.35
Tax: $1.16 at 6%
Total: $20.51

output

figure 2.15 Some methods of the DecimalFormat class

DecimalFormat (String pattern)
Constructor: creates a new DecimalFormat object with the specified pattern.

void applyPattern (String pattern)
Applies the specified pattern to this DecimalFormat object.

String format (double number)
Returns a string containing the specified number formatted according to the
current pattern.

f

ch02.qxp 3/13/06 1:57 PM Page 101

102 CHAPTER 2 objects and primitive data

listing
2.14

//**
// CircleStats.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the formatting of decimal values using the
// DecimalFormat class.
//**

import java.util.Scanner;
import java.text.DecimalFormat;

public class CircleStats
{

//---
// Calculates the area and circumference of a circle given its
// radius.
//---
public static void main (String[] args)
{

int radius;
double area, circumference;
Scanner scan = new Scanner(System.in);

System.out.print ("Enter the circle's radius: ");
radius = scan.nextInt();

area = Math.PI * Math.pow(radius, 2);
circumference = 2 * Math.PI * radius;

// Round the output to three decimal places
DecimalFormat fmt = new DecimalFormat ("0.###");

System.out.println ("The circle's area: " + fmt.format(area));
System.out.println ("The circle's circumference: "

+ fmt.format(circumference));
}

}

Enter the circle's radius: 5
The circle's area: 78.54
The circle's circumference: 31.416

output

ch02.qxp 3/13/06 1:57 PM Page 102

2.10 formatting output 103

the printf method
In addition to print and println, the System class has another output
method called printf, which allows the user to print a formatted string con-
taining data values. The first parameter to the method represents the format
string, and the remaining parameters specify the values that are inserted into
the format string.

For example, the following line of code prints an ID number and a name:

System.out.printf ("ID: %5d\tName: %s", id, name);

The first parameter specifies the format of the output and includes literal
characters that label the output values (ID: and Name:) as well as escape
characters such as \t. The pattern %5d indicates that the corresponding
numeric value (id) should be printed in a field of five characters. The pat-
tern %s matches the string parameter name. The values of id and name are
inserted into the string, producing a result such as:

ID: 24036 Name: Larry Flagelhopper

The printf method was added to Java to mirror a similar function used
in programs written in the C programming language. It makes it easier for a
programmer to translate an existing C program into Java. However, using
the printf method is not a particularly clean object-oriented solution to the
problem of formatting output, so we avoid its use in this book.

One of the things that you will want to study for the AP* Exam is the AP*
Case Study. The AP* Case Study helps you learn by analyzing a relatively
large program written by experienced programmers. Some of the questions
on the AP* Exam will be about this AP* Case Study.

In special online sections for each chapter of this book, starting here with
Chapter 2 and extending through Chapter 7, we tie in the AP* Case Study
with the topics you learned in the chapter. These sections help you learn the
AP* Case Study as well as providing an opportunity for you to see the mate-
rial from the chapter in action.

To work with the AP* Case Study section for this chapter, go to
www.aw.com/cssupport and look under author: Lewis/Loftus/Cocking.

AP* case study

ch02.qxp 3/13/06 1:57 PM Page 103

104 CHAPTER 2 objects and primitive data

2.11 an introduction to applets
There are two kinds of Java programs: Java applets and
Java applications. A Java applet is a Java program that is
embedded in an HTML document, transported across a net-
work, and executed using a Web browser. A Java applica-
tion is a stand-alone program that can be executed using the
Java interpreter. All programs shown so far in this book
have been Java applications.

The Web lets users send and receive different types of media, such as text,
graphics, and sound, using a point-and-click interface that is extremely con-
venient and easy to use. A Java applet was the first kind of executable pro-
gram that could be retrieved using Web software. Java applets are just
another type of media that can be exchanged across the Web.

Though Java applets are meant to be transported across a network, they
don’t have to be. They can be viewed locally using a Web browser. For that
matter, they don’t even have to be executed through a Web browser at all. A
tool in Sun’s Java Software Development Kit called appletviewer can be used
to interpret and execute an applet. We use appletviewer to display most of
the applets in the book. However, usually the point of making a Java applet
is to provide a link to it on a Web page so it can be retrieved and executed
by Web users anywhere in the world.

Java bytecode (not Java source code) is linked to an HTML document and
sent across the Web. A version of the Java interpreter that is part of a Web
browser executes the applet once it reaches its destination. A Java applet
must be compiled into bytecode format before it can be used with the Web.

There are some important differences between a Java applet and a Java
application. Because the Web browser that executes an applet is already run-
ning, applets can be thought of as a part of a larger program. That means
they do not have a main method where execution starts. For example, the
paint method in an applet is automatically invoked by the applet. Consider
the program in Listing 2.15, in which the paint method is used to draw a
few shapes and write a quotation by Albert Einstein to the screen.

The two import statements at the beginning of the program tell which
packages are used in the program. In this example, we need the Applet
class, which is part of the java.applet package, and the graphics capabil-
ities defined in the java.awt package.

A class that defines an applet extends the Applet class, as shown in
the header line of the class declaration. This makes use of the object-oriented
concept of inheritance, which we explore in more detail in Chapter 7. Applet
classes must also be declared as public.

G
R
A
P
H
I
C
S

T
R
A
C
K

Applets are Java programs that
are usually transported across a
network and executed using a
Web browser. Java applications
are stand-alone programs that
can be executed using the Java
interpreter.

ke
y

co
nc

ep
t

ch02.qxp 3/13/06 1:57 PM Page 104

2.11 an introduction to applets 105

listing
2.15

//**
// Einstein.java Author: Lewis/Loftus/Cocking
//
// Demonstrates a basic applet.
//**

import java.applet.Applet;
import java.awt.*;

public class Einstein extends Applet
{

//---
// Draws a quotation by Albert Einstein among some shapes.
//---
public void paint (Graphics page)
{

page.drawRect (50, 50, 40, 40); // square
page.drawRect (60, 80, 225, 30); // rectangle
page.drawOval (75, 65, 20, 20); // circle
page.drawLine (35, 60, 100, 120); // line

page.drawString ("Out of clutter, find simplicity.", 110, 70);
page.drawString ("-- Albert Einstein", 130, 100);

}
}

display

ch02.qxp 3/13/06 1:57 PM Page 105

106 CHAPTER 2 objects and primitive data

The paint method is one of several special applet methods. It is invoked
automatically whenever the graphic elements of the applet need to be
“painted” to the screen, such as when the applet is first run or when another
window that was covering it is moved.

Note that the paint method accepts a Graphics object as a parameter.
A Graphics object defines a particular graphics context, a part of the screen
we can use. The graphics context passed into an applet’s paint method rep-
resents the entire applet window. Each graphics context has its own coordi-
nate system. In later examples, we will have multiple components, each with
its own graphics context.

A Graphics object lets us draw shapes using methods such as drawRect,
drawOval, drawLine, and drawString. The parameters passed to the
drawing methods list the coordinates and sizes of the shapes to be drawn. We
explore these and other methods that draw shapes in the next section.

executing applets using the Web
In order for the applet to travel over the Web and be executed by a browser,
it must be referenced in a HyperText Markup Language (HTML) document.
An HTML document contains tags that spell out formatting instructions and
identify the special types of media that are to be included in a document. A
Java program is considered a specific media type, just as text, graphics, and
sound are. An HTML tag is enclosed in angle brackets:

<applet code="Einstein.class" width=350 height=175>
</applet>

figure 2.16 The Java translation and execution process, including applets

Across the

Internet

using HTML

Local computer
Remote computer

Java source

code

Java

bytecodeJava compiler

Java

interpreter

Bytecode

compiler

Machine

code

Web browser

Java

interpreter

f

ch02.qxp 3/13/06 1:57 PM Page 106

2.12 drawing shapes 107

This tag says that the bytecode stored in the file Einstein.class should
travel over the network and be executed on the machine that wants to view
this particular HTML document. The applet tag also states the width and
height of the applet in pixels.

There are other tags that can be used to reference an applet in an HTML
file, including the <object> tag and the <embed> tag. The <object> tag is
actually the tag that should be used, according to the World Wide Web
Consortium (W3C). However, browser support for the <object> tag is not
consistent. For now, the most reliable solution is the <applet> tag.

Note that the applet tag refers to the bytecode file of the Einstein
applet, not to the source code file. Before an applet can travel over the Web,
it must be compiled into its bytecode format. Then, as shown in Figure 2.16,
the document can be loaded using a Web browser, which will automatically
interpret and execute the applet.

2.12 drawing shapes
The Java standard class library provides many classes that let us use graph-
ics. The Graphics class is the basic tool for presenting and using graphics.

the Graphics class
The Graphics class is defined in the java.awt package. Its methods let us
draw shapes, including lines, rectangles, and ovals. Figure 2.17 lists some of
the drawing methods of the Graphics class. Note that these methods also
let us draw circles and squares, which are types of ovals and rectangles. We
discuss more drawing methods of the Graphics class later in this book.

The methods of the Graphics class let us fill, or color
in, a shape if we want to. An unfilled shape is only an out-
line and is transparent (you can see any underlying graph-
ics). A filled shape is solid and covers any underlying
graphics.

All of these methods rely on the Java coordinate system, which we dis-
cussed in Chapter 1. Recall that point (0,0) is in the upper-left corner, such
that x values get larger as we move to the right, and y values get larger as we
move down. Any shapes drawn at coordinates that are outside the visible
area will not be seen.

Many of the Graphics drawing methods are self-
explanatory, but some require a little more discussion.
Note, for instance, that the drawOval method draws an
oval inside an imaginary rectangle, called the bounding

Most shapes can be drawn
filled (opaque) or unfilled (as an
outline).

key
concept

A bounding rectangle defines
the position and size of curved
shapes such as ovals.

key
concept

ch02.qxp 3/13/06 1:57 PM Page 107

108 CHAPTER 2 objects and primitive data

figure 2.18 An oval and its bounding rectangle

height

width

figure 2.17 Some methods of the Graphics class

void drawArc (int x, int y, int width, int height, int
startAngle, int arcAngle)

Paints part of an oval in the rectangle defined by x, y, width, and �
height. The oval starts at startAngle and continues for a distance �
defined by arcAngle.

void drawLine (int x1, int y1, int x2, int y2)

Paints a line from point (x1, y1) to point (x2, y2).

void drawOval (int x, int y, int width, int height)

Paints an oval in the rectangle with an upper left corner of (x, y) and
dimensions width and height.

void drawRect (int x, int y, int width, int height)

Paints a rectangle with upper left corner (x, y) and dimensions width and
height.

void drawString (String str, int x, int y)

Paints the character string str at point (x, y), extending to the right.

void fillArc (int x, int y, int width, int height, �
int startAngle, int arcAngle)

void fillOval (int x, int y, int width, int height)

void fillRect (int x, int y, int width, int height)

Draws a shape and fills it with the current foreground color.

Color getColor ()

Returns this graphics context’s foreground color.

void setColor (Color color)

Sets this graphics context’s foreground color to the specified color.

rectangle. Shapes with curves such as ovals are often drawn inside a rectan-
gle as a way of giving their perimeters. Figure 2.18 shows a bounding rec-
tangle for an oval.

ch02.qxp 3/13/06 1:57 PM Page 108

2.12 drawing shapes 109

An arc is a segment of an oval. To draw an arc, we
describe the oval and the part of the oval we’re interested
in. The starting point of the arc is the start angle and the
ending point is the arc angle. The arc angle does not say
where the arc ends, but rather its range. The start angle
and the arc angle are measured in degrees. The beginning
of the start angle is an imaginary horizontal line passing through the center
of the oval and can be referred to as 0°, as shown in Figure 2.19.

the Color class
In Java, a programmer uses the Color class, which is part
of the java.awt package, to define and manage colors.
Each object of the Color class represents a single color.
The class provides a basic set of predefined colors. Figure
2.20 lists the colors of the Color class.

The Color class also contains methods you can use to define and manage
many other colors. Recall from Chapter 1 that you can create colors using
the RGB technique by mixing the primary colors: red, green, and blue.

Every graphics context has a current foreground color that is used when-
ever shapes or strings are drawn. Every surface that can be drawn on has a
background color. The foreground color is set using the setColor method
of the Graphics class, and the background color is set using the
setBackground method of the component on which we are drawing, such
as the applet.

Listing 2.16 shows an applet called Snowman. It uses drawing and color
methods to draw a snowman. Look at the code carefully to see how each
shape is drawn to create the picture.

A Color class contains several
common colors.

key
concept

An arc is a segment of an oval;
the segment begins at a start
angle and extends for a
distance specified by the arc
angle.

key
concept

figure 2.19 An arc defined by an oval, a start angle, and an arc angle

drawArc (10, 10, 60, 30, 20, 90)

height

30

width 60

90°

90°

20°
0°

20°

110°

<10, 10>

ch02.qxp 3/13/06 1:57 PM Page 109

110 CHAPTER 2 objects and primitive data

figure 2.20 Predefined colors in the Color class

black

blue

cyan

gray

dark gray

light gray

green

magenta

orange

pink

red

white

yellow

Color.black

Color.blue

Color.cyan

Color.gray

Color.darkGray

Color.lightGray

Color.green

Color.magenta

Color.orange

Color.pink

Color.red

Color.white

Color.yellow

0, 0, 0

0, 0, 255

0, 255, 255

128, 128, 128

64, 64, 64

192, 192, 192

0, 255, 0

255, 0, 255

255, 200, 0

255, 175, 175

255, 0, 0

255, 255, 255

255, 255, 0

Color Object RGB Value

F

listing
2.16

//**
// Snowman.java Author: Lewis/Loftus/Cocking
//
// Demonstrates basic drawing methods and the use of color.
//**

import java.applet.Applet;
import java.awt.*;

public class Snowman extends Applet
{

//---
// Draws a snowman.
//---
public void paint (Graphics page)
{

final int MID = 150;
final int TOP = 50;

setBackground (Color.cyan);

page.setColor (Color.blue);
page.fillRect (0, 175, 300, 50); // ground

page.setColor (Color.yellow);
page.fillOval (-40, -40, 80, 80); // sun

ch02.qxp 3/13/06 1:57 PM Page 110

2.12 drawing shapes 111

Note that the snowman is based on two constant values called MID and
TOP, which define the midpoint of the snowman (left to right) and the top of
the snowman’s head. The entire snowman is drawn relative to these values.
Using constants like these makes it easier to create the snowman and to make
changes later. For example, to shift the snowman to the right or left in our
picture, we only have to change one constant declaration.

listing
2.16 continued

page.setColor (Color.white);
page.fillOval (MID-20, TOP, 40, 40); // head
page.fillOval (MID-35, TOP+35, 70, 50); // upper torso
page.fillOval (MID-50, TOP+80, 100, 60); // lower torso

page.setColor (Color.black);
page.fillOval (MID-10, TOP+10, 5, 5); // left eye
page.fillOval (MID+5, TOP+10, 5, 5); // right eye

page.drawArc (MID-10, TOP+20, 20, 10, 190, 160); // smile

page.drawLine (MID-25, TOP+60, MID-50, TOP+40); // left arm
page.drawLine (MID+25, TOP+60, MID+55, TOP+60); // right arm

page.drawLine (MID-20, TOP+5, MID+20, TOP+5); // brim of hat
page.fillRect (MID-15, TOP-20, 30, 25); // top of hat

}
}

display

ch02.qxp 3/13/06 1:57 PM Page 111

112 CHAPTER 2 objects and primitive data

◗ The information we manage in a Java program is either primitive data
or objects.

◗ An abstraction hides details. A good abstraction hides the right details
at the right time.

◗ A variable is a name for a memory location used to hold a value.

◗ A variable can store only one value of its declared type.

◗ Java is a strongly typed language. Each variable has a specific type,
and we cannot assign a value of one type to a variable of another
type.

◗ Constants are like variables, but they have the same value throughout
the program.

◗ Java has two kinds of numeric values: integers and floating point. The
primitive type int is an integer data type and double is a floating
point data type.

◗ Expressions are combinations of one or more operands and the opera-
tors used to perform a calculation.

◗ Java has rules that govern the order in which operators will be evalu-
ated in an expression. These rules are called operator precedence
rules.

◗ Avoid narrowing conversions because they can lose information.

◗ Enumerated types are type-safe, ensuring that invalid values will not
be used.

◗ The new operator returns a reference to a newly created object.

◗ A wrapper class allows a primitive value to be used as an object.

◗ Autoboxing provides automatic conversions between primitive values
and corresponding wrapper objects.

◗ The Java standard class library is a useful set of classes that anyone
can use when writing Java programs.

◗ A package is a Java language element used to group related classes
under a common name.

◗ The Scanner class provides methods for reading input of various
types from various sources.

◗ Applets are Java programs that can travel across a network and be
executed using a Web browser. Java applications are stand-alone pro-
grams that can be executed using the Java interpreter.

ch02.qxp 3/13/06 1:57 PM Page 112

self-review questions 113

◗ Most shapes can be drawn filled in or left unfilled.

◗ A bounding rectangle is often used to define the position and size of
curved shapes such as ovals.

◗ An arc is a segment of an oval; the segment begins at a specific start
angle and extends for a distance specified by the arc angle.

◗ The Color class contains several common predefined colors.

self-review questions
2.1 What are the primary concepts that support object-oriented

programming?

2.2 Why is an object an example of abstraction?

2.3 What is primitive data? How are primitive data types different
from objects?

2.4 What is a string literal?

2.5 What is the difference between the print and println methods?

2.6 What is a parameter?

2.7 What is an escape sequence? Give some examples.

2.8 What is a variable declaration?

2.9 How many values can be stored in an integer variable?

2.10 What is a character set?

2.11 What is operator precedence?

2.12 What is the result of 19%5 when evaluated in a Java expression?
Explain.

2.13 What is the result of 13/4 when evaluated in a Java expression?
Explain.

2.14 Why are widening conversions safer than narrowing conversions?

2.15 What is an enumerated type?

2.16 What does the new operator do?

2.17 How can we represent a primitive value as an object?

2.18 What is a Java package?

2.19 Why doesn’t the String class have to be imported into our
programs?

2.20 What is a class method (also called a static method)?

ch02.qxp 3/13/06 1:57 PM Page 113

114 CHAPTER 2 objects and primitive data

2.21 What is the difference between a Java application and a Java
applet?

multiple choice
2.1 What will be printed by the following statement?

System.out.println("Use a \"\\\"");

a. Use a \"\\\"

b. "Use a "\""

c. Use a "\"

d. Use a \"\""

e. Use a "\\"

2.2 Which keyword is used to declare a constant?

a. int

b. double

c. MAX

d. constant

e. final

2.3 The expression "number" + 6 + 4 * 5 produces which of
the following string literals?

a. "number645"

b. "number105"

c. "number50"

d. "number620"

e. "number26"

2.4 Which of the following is a character literal?

a. b

b. 'b'

c. "b"

d. 2

e. 2.0

ch02.qxp 3/13/06 1:57 PM Page 114

multiple choice 115

2.5 What is the result of the operation 30 % 4?

a. 2

b. 3

c. 4

d. 7

e. 7.5

2.6 The expression 1 / 4 is equal to which of the following?

a. 1.0 / 4.0

b. (double)2 / 8

c. 0.25

d. (int)1.0 / 4.0

e. 1 / (int)4.0

2.7 Which of the following instantiates a String object?

a. String word;

b. word = new String("the");

c. word.length();

d. word = name;

e. String word = name;

2.8 Assuming g is an instance of the Random class, which statement
will generate a random number between 10 and 100 inclusive?

a. num = g.nextInt(101);

b. num = 10 + g.nextInt(101);

c. num = 10 + g.nextInt(91);

d. num = 10 + g.nextInt(90);

e. num = g.nextInt(110) – 10;

2.9 Which statement would we use to create an object from a class
called Thing?

a. Thing something;

b. Thing something = Thing();

c. Thing something = new Thing;

d. Thing something = new Thing();

e. new Thing() = something;

ch02.qxp 3/13/06 1:57 PM Page 115

116 CHAPTER 2 objects and primitive data

2.10 Suppose we have a variable something that is a reference to a
Thing object. How would we call the method doIt on our
Thing object?

a. doIt()

b. something.doIt()

c. doIt(something)

d. something/doIt

e. something(doIt)

true/false
2.1 An object is an abstraction, meaning that the user doesn’t need

to know the details of how it works.

2.2 A string literal appears inside single quotation marks.

2.3 In order to include a double quotation mark (") or a backslash
(\) in a string literal, we must use an escape sequence.

2.4 The operators *, /, and % have precedence over + and –.

2.5 Widening conversions can happen automatically, such as in the
expression 1 + 2.5 where 1 is converted to a double.

2.6 In the declaration int num = 2.4; the 2.4 will automatically
be converted to an int and num will get the value 2.

2.7 In Java, Integer is a class, whereas int is a primitive type.

2.8 Assuming generator is an object of the Random class, the call
generator.nextInt(8) will generate a random number
between 0 and 7 inclusive.

short answer
2.1 Explain the following programming statement in terms of

objects and the services they provide:

System.out.println ("I gotta be me!");

2.2 What output is produced by the following code fragment?
Explain.

System.out.print ("Here we go!");
System.out.println ("12345");
System.out.print ("Test this if you are not sure.");

ch02.qxp 3/13/06 1:57 PM Page 116

short answer 117

System.out.print ("Another.");
System.out.println ();
System.out.println ("All done.");

2.3 What is wrong with the following program statement? How can
it be fixed?

System.out.println ("To be or not to be, that
is the question.");

2.4 What output is produced by the following statement? Explain.

System.out.println ("50 plus 25 is " + 50 + 25);

2.5 What is the output produced by the following statement?
Explain.

System.out.println ("He thrusts his fists\n\tagainst" +
" the post\nand still insists\n\the sees the \"ghost\"");

2.6 Given the following declarations, what result is stored in each of
the listed assignment statements?

int iResult, num1 = 25, num2 = 40, num3 = 17, num4 = 5;
double fResult, val1 = 17.0, val2 = 12.78;

Example: iResult = num2%num1;

The result that gets stored is 15 because 40%25 equals 15 (25
goes into 40 once, with remainder 15).

a. iResult = num1 / num4;

b. fResult = num1 / num4;

c. iResult = num3 / num4;

d. fResult = num3 / num4;

e. fResult = val1 / num4;

f. fResult = val1 / val2;

g. iResult = num1 / num2;

h. fResult = (double) num1 / num2;

i. fResult = num1 / (double) num2;

j. fResult = (double) (num1 / num2);

k. iResult = (int) (val1 / num4);

l. fResult = (int) (val1 / num4);

m.fResult = (int) ((double) num1 / num2);

ch02.qxp 3/13/06 1:57 PM Page 117

118 CHAPTER 2 objects and primitive data

n. iResult = num3 % num4;

o. iResult = num2 % num3;

p. iResult = num3 % num2;

q. iResult = num2 % num4;

2.7 For each of the following expressions, indicate the order in
which the operators will be evaluated by writing a number
beneath each operator.

Example: a + b * c – d

2 1 3

a. a – b – c – d

b. a – b + c – d

c. a + b / c / d

d. a + b / c * d

e. a / b * c * d

f. a % b / c * d

g. a % b % c % d

h. a – (b – c) – d

i. (a – (b – c)) – d

j. a – ((b – c) – d)

k. a % (b % c) * d * e

l. a + (b – c) * d – e

m.(a + b) * c + d * e

n. (a + b) * (c / d) % e

2.8 Write code to create an enumerated type for the days of the
week. Declare a variable of the type you created and set it equal
to Sunday.

2.9 What output is produced by the following code fragment?

String m1, m2, m3;
m1 = "Quest for the Holy Grail";
m2 = m1.toLowerCase();
m3 = m1 + " " + m2;
System.out.println (m3.replace('h', 'z'));

2.10 Write an assignment statement that computes the square root of
the sum of num1 and num2 and assigns the result to num3.

ch02.qxp 3/13/06 1:57 PM Page 118

programming projects 119

2.11 Write a single statement that computes and prints the absolute
value of total.

2.12 Assuming that a Random object called generator has been cre-
ated, what is the range of the result of each of the following
expressions?

a. generator.nextInt(20)

b. generator.nextInt(8) + 1

c. generator.nextInt(45) + 10

d. generator.nextInt(100) – 50

2.13 Write code to declare and instantiate an object of the Random
class (call the object reference variable rand). Then write a list
of expressions using the nextInt method that generates random
numbers in the following ranges, including the endpoints.

a. 0 to 10

b. 0 to 500

c. 1 to 10

d. 1 to 500

e. 25 to 50

f. –10 to 15

programming projects
2.1 Create a new version of the Lincoln application from Chapter

1 with quotation marks around the quotation.

2.2 Write an application that reads three numbers and prints their
average.

2.3 Write an application that reads two floating point numbers and
prints their sum, difference, and product.

2.4 Create a revised version of the TempConverter application to
convert from Fahrenheit to Celsius. Read the Fahrenheit temper-
ature from the user.

2.5 Write an application that converts miles to kilometers. (One mile
equals 1.60935 kilometers.) Read the miles value from the user
as a floating point value.

ch02.qxp 3/13/06 1:57 PM Page 119

120 CHAPTER 2 objects and primitive data

2.6 Write an application that reads values representing a time in
hours, minutes, and seconds. Then print the same time in sec-
onds. (For example, 1 hour, 28 minutes, and 42 seconds is equal
to 5322 seconds.)

2.7 Create a new version of Programming Project 2.6 that works in
reverse. That is, read a value representing a number of seconds,
then print the same amount of time in hours, minutes, and sec-
onds. (For example, 9999 seconds is equal to 2 hours, 46 min-
utes, and 39 seconds.)

2.8 Write an application that reads the (x,y) coordinates for two
points. Compute the distance between the two points using the
following formula:

Distance = Ï(xw2w–w xw1)w2w–w (wyw2w+w yw1)w2w
2.9 Write an application that reads the radius of a sphere and prints

its volume and surface area. Use the following formulas. Print
the output to four decimal places. r represents the radius.

Volume = }43}pr3

Surface area = 4pr2

2.10 Write an application that reads the lengths of the sides of a tri-
angle from the user. Compute the area of the triangle using
Heron’s formula (below), in which s is half of the perimeter of
the triangle, and a, b, and c are the lengths of the three sides.
Print the area to three decimal places.

Area = Ïs(wsw–w aw)(wsw–w bw)(wsw–w cw)w
2.11 Write an application that computes the number of miles per gal-

lon (mpg) of gas for a trip. The total amount of gas used should
be a floating point number. Also accept two numbers represent-
ing the odometer readings at the start and end of the trip.

2.12 Write an application that determines the value of the coins in a
jar and prints the total in dollars and cents. Read integer values
that represent the number of quarters, dimes, nickels, and pen-
nies. Use a currency formatter to print the output.

2.13 Write an application that creates and prints a random phone
number of the form XXX-XXX-XXXX. Include the dashes in the
output. Do not let the first three digits contain an 8 or 9 (but
don’t be more restrictive than that), and make sure that the sec-
ond set of three digits is not greater than 742. Hint: Think
through the easiest way to construct the phone number. Each
digit does not have to be determined separately.

ch02.qxp 3/13/06 1:57 PM Page 120

AP*-style multiple choice 121

2.14 Create a revised version of the Snowman applet (Listing 2.15)
with the following modifications:

◗ Add two red buttons to the upper torso.

◗ Make the snowman frown instead of smile.

◗ Move the sun to the upper-right corner of the picture.

◗ Display your name in the upper-left corner of the picture.

◗ Shift the entire snowman 20 pixels to the right.

2.15 Write an applet that draws a smiling face. Give the face a nose,
ears, a mouth, and eyes with pupils.

AP*-style multiple choice
2.1 Consider the following variable declarations.

int a = 5, b = 4;
double x = 5.0, y = 4.0;

Which of the following expressions have the value 1?

I. (int) x / y

II. a / b

III. a % b

(A) II only

(B) I and II only

(C) I and III only

(D) II and III only

(E) I, II, and III

2.2 Consider a program that converts hours, minutes, and seconds
into the total number of seconds. Assume the number of hours,
minutes, and seconds have been read into the variables hours,
minutes, and seconds, respectively, and that the variable
totalSeconds has been properly declared. Which of the follow-
ing correctly calculates the total number of seconds?

(A) totalSeconds = hours * minutes * 60 + minutes * 60
+ seconds;

(B) totalSeconds = hours * 360 + minutes * 60 + seconds;

(C) totalSeconds = hours + minutes * 60 + seconds * 360;

(D) totalSeconds = hours % 360 + minutes % 60 + seconds;

(E) totalSeconds = hours / 360 + minutes / 60 + seconds;

ch02.qxp 3/13/06 1:57 PM Page 121

122 CHAPTER 2 objects and primitive data

2.3 Consider the following variable declarations.

String s = "crunch";
int a = 3, b = 1;

What is printed by the following statements?

System.out.print(s + a + b);
System.out.println(b + a + s);

(A) crunch44crunch

(B) crunch413crunch

(C) crunch314crunch

(D) crunch3113crunch

(E) Nothing is printed due to a runtime error.

answers to self-review questions
2.1 The main elements that support object-oriented programming

are objects, classes, encapsulation, and inheritance. An object is
defined by a class, which contains methods that define the oper-
ations on those objects (the services that they perform). Objects
store and manage their own data. Inheritance is a technique in
which one class can be created from another.

2.2 An object is abstract because the details of the object are hidden
from, and largely unimportant to, the user of the object. Hidden
details help us manage the complexity of software.

2.3 Primitive data are basic values such as numbers or characters.
Objects are more complex and usually contain primitive data
that help define them.

2.4 A string literal is a sequence of characters that appear in double
quotation marks.

2.5 Both the print and println methods of the System.out
object write a string of characters to the computer screen. The
difference is that, after printing the characters, the println
does a carriage return so that whatever’s printed next appears on
the next line. The print method lets new output appear on the
same line.

ch02.qxp 3/13/06 1:57 PM Page 122

answers to self-review questions 123

2.6 A parameter is data that is passed into a method. The method
usually uses that data. For example, the parameter to the
println method is the string of characters to be printed. As
another example, the two numeric parameters to the Math.pow
method are the operands to the power function that is computed
and returned.

2.7 An escape sequence is a series of characters that begins with the
backslash (\). The characters that follow should be treated in
some special way. Examples: \n represents the newline character
and \" represents the quotation character (as opposed to using it
to terminate a string).

2.8 A variable declaration gives the name of a variable and the type
of data that it can contain. A declaration may also have an ini-
tialization, which gives the variable an initial value.

2.9 An integer variable can store only one value at a time. When a
new value is assigned to it, the old one is overwritten and lost.

2.10 A character set is a list of characters in a particular order. A
character set defines the valid characters that a particular type of
computer or programming language will recognize. Java uses the
Unicode character set.

2.11 Operator precedence is the set of rules that dictates the order in
which operators are evaluated in an expression.

2.12 The result of 19%5 in a Java expression is 4. The remainder oper-
ator % returns the remainder after dividing the second operand
into the first. Five goes into 19 three times, with 4 left over.

2.13 The result of 13/4 in a Java expression is 3 (not 3.25). The
result is an integer because both operands are integers. Therefore
the / operator performs integer division, and the fractional part
of the result is cut off.

2.14 A widening conversion does not cause information to be lost.
Information is more likely to be lost in a narrowing conversion,
which is why narrowing conversions are considered to be less
safe than widening ones.

2.15 An enumerated type is a user-defined type with a small, fixed set
of possible values.

2.16 The new operator creates a new instance (an object) of a class.
The constructor of the class helps set up the newly created
object.

ch02.qxp 3/13/06 1:57 PM Page 123

124 CHAPTER 2 objects and primitive data

2.17 A wrapper class is defined in the Java standard class library for
each primitive type. In situations where objects are called for, an
object created from a wrapper class may suffice.

2.18 A Java package is a set of classes that have something in com-
mon. The Java standard class library is a group of packages that
support common programming tasks.

2.19 The String class is part of the java.lang package, which is
automatically imported into any Java program. Therefore, no
separate import declaration is needed.

2.20 A class or static method can be invoked through the name of the
class that contains it, such as Math.abs. If a method is not
static, it can be executed only through an instance (an object) of
the class.

2.21 A Java applet is a Java program that can be executed using a
Web browser. Usually, the bytecode form of the Java applet is
pulled across the Internet from another computer. A Java appli-
cation is a Java program that can stand on its own. It does not
need a Web browser in order to execute.

ch02.qxp 3/13/06 1:57 PM Page 124

