All programming languages have

statements that help you perform basic

operations. These statements handle all

chapter
objectives

D Discuss basic program develop-
ment steps.

Define the flow of control through
a program.

Learn to use if statements.

Define expressions that let us
make complex decisions.

Learn to use while and for
statements.

Use conditionals and loops to draw
graphics.

programmed activity. This
chapter looks at several of
these programming state-
ments as well as some addi-
tional operators. It begins by
exploring the basic steps that
a programmer takes when
developing software. These
activities are the basis of
high-quality software devel-
opment and a disciplined
development process. Finally,
we use some of the statements
we have learned to produce

graphical output.

S1uawalras wedboud

126 CHAPTER 3 program statements

3.0 program development

Creating software involves much more than just writing code. As you learn
about programming language statements you should develop good pro-
gramming habits. This section introduces some of the basic programming
steps in developing software.

Software development involves four basic development activities:

» establishing the requirements
» creating a design
» implementing the code

» testing the implementation

It would be nice if these activities always happened in this order, but they
almost never do. Instead, they often overlap. Let’s discuss each development
stage briefly.

Software requirements are the things that a program must accom-
, , plish. They are the tasks that a program should do, not how it should
S Software requirements specify L.
=% whata program must do them. You may recall from Chapter 1 that programming is really
=S accomplish. about solving a problem. Requirements are the clear expression of
that problem. Until we know what problem we are trying to solve, we
can’t solve it.

The person or group who wants a software product developed (the client)
will usually give you a set of requirements. However, these requirements are
often incomplete, ambiguous, or even contradictory. You must work with the
client until you both agree on what the system will do.

Requirements often have to do with user interfaces such as output format,
screen layouts, and graphics. These are the things that make the program
useful for the end user. Requirements may also apply constraints to your pro-
gram, such as how fast a task must be performed. They may also impose
restrictions such as deadlines.

A software design describes how a program will meet the requirements.
The design spells out the classes and objects needed in a program and how
they work with each other. A detailed design might even list the steps that
parts of the code will follow.

A civil engineer would never consider building a bridge without
>§ :OS;Z‘"F’)?;Zieniisvniusgi':;;:rish designing it first. The design of software is just as important. Many
§§ its requirements. software problems are the result of poor or sloppy design. You need

to consider all the different ways of meeting the requirements, not
jump on the first idea. Often, the first attempt at a design is not the
best solution. Luckily, changes are easy to make during the design stage.

3.0 program development

One basic design issue is defining the algorithms to be used in the pro-
gram. An algorithm is a step-by-step process for solving a problem. A recipe
is like an algorithm. Travel directions are like an algorithm. Every program
uses one or more algorithms. Every software developer should spend time
thinking about the algorithms before writing any code.

An algorithm is often written in pseudocode, which is a mixture of

out getting bogged down in the details of a particular programming
language.

When you develop an algorithm, you should study all of the requirements
involved with that part of the problem. This ensures that the algorithm takes
into account all aspects of the problem. You should be willing to revise many
times before you’re done.

Implementation is the process of writing the source code, in a particular
programming language. Too many programmers focus on implementation,
when actually it should be the least creative part of development. The impor-
tant decisions should be made when the requirements are established and the
design is created. During implementation it is often best to start at the high-
est, or top, level and work your way down to the smaller and more detailed
pieces. This is called fop-down development. For example, you may imple-
ment the main algorithm of your program first and then move on to the
smaller pieces that the main algorithm calls on.

Testing a program includes running it many times with different

the computer to see where the program logic might fail.

The goal of testing is to find errors. By finding errors and fixing them, we
improve the quality of our program. It’s likely that later on someone else will
find errors that remained hidden during development, when the cost of fix-
ing that error is much higher. Taking the time to uncover problems as early
as possible is always worth the effort.

Running a program and getting the correct results only means that the
program works for the data you put in. The more times you test, with dif-
ferent input, the more confident you will feel. But you can never really be
sure that you’ve caught all the errors. There could always be an error
you didn’t find. Because of that, it is important to thoroughly test a
program with many different kinds of input. When one problem is
you fixed the problem you didn’t create a new problem. This tech- ~ found.
nique is called regression testing.

. . An algorithm is a step-by-step
code statements and English phrases sort of like a rough draft of an ;rocass for solving a problem,

essay. Pseudocode helps you decide how the code will operate with- often expressed in
pseudocode.

. Implementation should be the
inputs and carefully studying the results. Testing might also include = |east creative of all

hand-tracing program code, in which you mentally play the role of development activities.

The goal of testing is to find
errors. We can never really be
fixed, you should run your tests over again to make sure that when sure thatall errors have been

127

1d9su0d
oy

1d9su0d
£y

]
=

=m

m =

=
—

128

CHAPTER 3

Conditionals and loops let us
control the flow of execution
through a method.

program statements

3.1 control flow

The order in which statements are executed is called the flow of control.
Most of the time, a running program starts at the first programming state-
ment and moves down one statement at a time until the program is complete.
A Java application begins with the first line of the main method and pro-
ceeds step by step until it gets to the end of the main method.

Invoking a method changes the flow of control. When a method is called,
control jumps to the code for that method. When the method finishes, con-
trol returns to the place where the method was called and processing con-
tinues from there. In our examples so far, we’ve invoked methods in classes
and objects using the Java libraries, and we haven’t been concerned about
the code that defines those methods. We discuss how to write our own
classes and methods in Chapter 4.

Within a given method, we can changes the flow of control through
the code by using certain types of programming statements.
Statements that control the flow of execution through a method fall
into two categories: conditionals and loops.

A conditional statement is sometimes called a selection statement because
it lets us choose which statement will be executed next. The conditional
statements in Java that we will study are the if statement and the if-else
statement. These statements let us decide which statement to execute next.
Each decision is based on a boolean expression (also called a condition),
which says whether something is true or false. The result of the expression
determines which statement is executed next.

For example, the cost of life insurance might depend on whether the
insured person is a smoker. If the person smokes, we calculate the cost using
one particular formula; if not, we calculate it using another. The role of a
conditional statement is to evaluate a boolean condition (whether the person
smokes) and then to execute the proper calculation accordingly.

A loop, or repetition statement, lets us execute the same statement over
and over again. Like a conditional, a loop is based on a boolean expression
that determines how many times the statement is executed.

For example, suppose we wanted to calculate the grade point average of
every student in a class. The calculation is the same for each student; it is just
performed on different data. We would set up a loop that repeats the calcu-
lation for each student until there are no more students to process.

3.2 the if statement

Java has three types of loop statements:
» the while statement

» the do statement

» the for statement

Each type of loop statement has unique characteristics. We will study the
while and for statements in this book. Information on the do statement
(which is not in the AP* subset) can be found on the Web site.

Conditionals and loops control the flow through a method and are needed
in many situations. This chapter explores conditional and loop statements as
well as some additional operators.

3.2 the if statement

The if statement is a conditional statement found in many programming lan-
guages, including Java. The following is an example of an if statement:

if (total > amount)
total = total + (amount + 1);

) An if statement lets a program
An if statement consists of the reserved word if followed by a = choose whether to execute a

boolean expression, or condition, followed by a statement. The con- Particular statement.

dition is enclosed in parentheses and must be either true or false. If the
condition is true, the statement is executed and processing continues with the
next statement. If the condition is false, the statement is skipped and process-
ing continues immediately with the next statement. In this example, if the
value in total is greater than the value in amount, the assignment statement
is executed; otherwise, the assignment statement is skipped. Figure 3.1 shows
how this works.

1

condition
evaluated

true false
statement

figure 3.1 The logic of an if statement

129

130
‘2. Indentation is important for
>3
Lc I~
S relationship between one
statement and another.
Tisting

CHAPTER 3 program statements

Note that the assignment statement in this example is indented under the
header line of the if statement. This tells us that the assignment statement
is part of the if statement; it means that the if statement controls
whether the assignment statement will be executed. This indentation

human readability. It shows the is extremely important for the people who read the code.

3.1

The example in Listing 3.1 reads the age of the user and then
decides which sentence to print, based on the age that is entered.

//**

//
//
//

Age.java

Author: Lewis/Loftus/Cocking

Demonstrates the use of an if statement.
//**

import java.util.Scanner;

public class Age

public static void main (String[] args)

= new Scanner (System.in);

System.out.print ("Enter your age: ");

System.out.println ("You entered: " + age);

System.out.println ("Youth is a wonderful thing. Enjoy.");

System.out.println ("Age is a state of mind.");

{
/)=
[/ mmmm e
{
final int MINOR = 21;
Scanner scan
int age = scan.nextInt();
if (age < MINOR)
}
}
output

Enter your age: 35
You entered: 35
Age is a state of mind.

3.2 the if statement

The Age program in Listing 3.1 echoes (reads back) the age value that is
entered in all cases. If the age is less than the value of the constant MINOR,
the statement about youth is printed. If the age is equal to or greater than the
value of MINOR, the println statement is skipped. In either case, the final
sentence about age being a state of mind is printed.

equality and relational operators

Boolean expressions evaluate to either true or false. Java has several opera-
tors that produce a true or false result. The == and != operators are called
equality operators; they test if two values are equal (==) or not equal (!=).
Note that the equality operator is two equal signs side by side and should not
be mistaken for the assignment operator that uses only one equal sign.

The following if statement prints a sentence only if the variables total
and sum contain the same value:

if (total == sum)
System.out.println ("total equals sum");

Likewise, the following if statement prints a sentence only if the variables
total and sum do not contain the same value:

if (total != sum)
System.out.println ("total does NOT equal sum");

In the Age program in Listing 3.1 we used the < operator to decide
whether one value was less than another. The less than operator is one of sev-
eral relational operators that let us decide the relationships between values.
Figure 3.2 lists the Java equality and relational operators.

Operator Meaning

== equal to

1= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

figure 3.2 Java equality and relational operators

131

132

CHAPTER 3

program statements

The equality and relational operators have precedence lower than the
arithmetic operators. This means that arithmetic operations are evaluated
first, followed by equality and relational operations. As always, parentheses
can be used to specify the order of evaluation.

Let’s look at a few more examples of basic if statements.

if (size >= MAX)
size = 0;

This if statement causes the variable size to be set to zero if its current
value is greater than or equal to the value in the constant MAX.

The condition of the following if statement first adds three values
together, then compares the result to the value stored in numBooks.

if (numBooks < stackCount + inventoryCount + duplicateCount)
reorder = true;

If numBooks is less than the other three values combined, the boolean vari-
able reorder is set to true. The addition operations are performed before
the less than operator because the arithmetic operators have a higher prece-
dence than the relational operators.

The following if statement compares the value returned from a call to
nextInt to the calculated result of dividing the constant HIGH by 5. The
odds of this code picking a winner are 1 in 5.

if (generator.nextInt(HIGH) < HIGH / 5)
System.out.println ("You are a randomly selected winner!");

the if-else statement

Sometimes we want to do one thing if a condition is true and another thing
if that condition is false. We can add an else clause to an if statement, mak-
ing it an if-else statement, to handle this kind of situation. The following is
an example of an if-else statement:

if (height <= MAX)
adjustment = 0;

else
adjustment = MAX — height;

If the condition is true, the first assignment statement is executed; if the con-
dition is false, the second statement is executed. Only one or the other will
be executed because a boolean condition will evaluate to either true or false.

3.2 the if statement 133

Note that we indented to show that the statements are part of the if = aApir_c1se statement tells a

statement. program to do one thing if a
. .. . condition is true and another
The Wwages program shown in Listing 3.2 uses an if-else state- thing if the condition is false.

ment to compute the payment for an employee.

1daxu0d
£y

In the Wages program, if an employee works over 40 hours in a week, the
payment amount includes the overtime hours. An if-else statement is used
to determine whether the number of hours entered by the user is greater than
40. If it is, the extra hours are paid at a rate one and a half times the normal
rate. If there are no overtime hours, the total payment is based simply on the
number of hours worked and the standard rate.

Let’s look at another example of an if-else statement:

if (roster.getSize() == FULL)
roster.expand();

else
roster.addName (name);

This example uses an object called roster. Even without knowing what
roster is, we can see that it has at least three methods: getSize, expand,
and addName. The condition of the if statement calls getSize and com-
pares the result to the constant FULL. If the condition is true, the expand
method is invoked (apparently to expand the size of the roster). If the roster
is not yet full, the variable name is passed as a parameter to the addName
method.

If Statement

»@

Expression Statement | re
la(éEE)—iEEi&ﬁ&ﬁ?—I

An if statement tests the boolean Expression. If it is true, the pro-
gram executes the first Statement. The optional else clause shows the
Statement that should be executed if the Expression is false.

Examples:

if (total < 7)
System.out.println ("Total is less than 7.");

if (firstCh != 'a')
count++;

else
count = count / 2;

134 CHAPTER 3 program statements

//**

// Wages.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of an if-else statement.
//**

import java.text.NumberFormat;
import java.util.Scanner;

public class Wages

{
=~
// Reads the number of hours worked and calculates wages.
/] m e
public static void main (String[] args)
{

final double RATE = 8.25; // regular pay rate
final int STANDARD = 40; // standard hours in a work week

double pay = 0.0;
Scanner scan = new Scanner (System.in);

System.out.print ("Enter the number of hours worked: ");
int hours = scan.nextInt();

System.out.println ();

// Pay overtime at "time and a half"
if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);
else

pay = hours * RATE;

NumberFormat fmt = NumberFormat.getCurrencyInstance();
System.out.println ("Gross earnings: " + fmt.format(pay));

—

3.2 the if statement

using block statements

We may want to do more than one thing as the result of evaluating a boolean
condition. In Java, we can replace any single statement with a block state-
ment. A block statement is a collection of statements enclosed in braces.
We’ve already seen these braces used with the main method and a class def-
inition. The program called Guessing, shown in Listing 3.3, uses an
if-else statement with the statement of the else clause in a block
statement.

If the user’s guess equals the answer, the sentences “You got it! Good
guessing” are printed. If the guess doesn’t match two statements are printed,
one that says that the guess is wrong and one that prints the actual answer.
A programming project at the end of this chapter expands this into the
Hi-Lo game.

Note that if we didn’t use the block braces, the sentence stating that the
guess is incorrect would be printed if the guess was wrong, but the sentence
revealing the correct answer would be printed in all cases. That is, only the
first statement would be considered part of the else clause.

Remember that indentation is only for people reading the code.
Statements that are not blocked properly can cause the programmer to mis-
understand how the code will execute. For example, the following code is
misleading:
if (depth > 36.238)

delta = 100;
else

System.out.println ("WARNING: Delta is being reset to ZERO");
delta = 0; // not part of the else clause!

The indentation (not to mention the logic of the code) seems to mean that
the variable delta is reset only when depth is less than 36.238. However,
without using a block, the assignment statement that resets delta to zero is
not governed by the if-else statement at all. It is executed in either case,
which is clearly not what is intended.

135

136 CHAPTER 3 program statements

//**

// Guessing.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a block statement in an if-else.
//********************'k********************'k**************************

import java.util.Scanner;
import java.util.Random;

public class Guessing

{
/== m e
// Plays a simple guessing game with the user.
[= m e e e e
public static void main (String[] args)
{

final int MAX = 10;
int answer, guess;
Scanner scan = new Scanner (System.in);

Random generator = new Random();
answer = generator.nextInt(MAX) + 1;

System.out.print ("I'm thinking of a number between 1 and "
+ MAX + ". Guess what it is: ");
guess = scan.nextInt();

if (guess == answer)

System.out.println ("You got it! Good guessing!");
else
{

System.out.println ("That is not correct, sorry.");
System.out.println ("The number was " + answer);
}
}

—

3.2 the if statement

A block statement can be used anywhere a single statement is called for in
Java syntax. For example, the if part of an if-else statement could be a
block, or the else portion could be a block (as we saw in the Guessing
program), or both parts could be block statements. For example:

if (boxes != warehouse.getCount())

{
System.out.println ("Inventory and warehouse do NOT match.");
System.out.println ("Beginning inventory process again!");
boxes = 0;

}

else

{
System.out.println ("Inventory and warehouse MATCH.");
warehouse.ship();

}

In this if-else statement, the value of boxes is compared to a value that
we got by calling the getCount method of the warehouse object (whatever
that is). If they do not match exactly, two print1ln statements and an assign-
ment statement are executed. If they do match, a different message is printed
and the ship method of warehouse is invoked.

nested if statements

The statement executed as the result of an if statement could be another if
statement. This situation is called a nested if. It lets us make another decision
after getting the results of a previous decision. The program in Listing 3.4,
called MinOfThree, uses nested if statements to find the smallest of three
integer values entered by the user.

Carefully trace the logic of the MinOfThree program, using different sets
of numbers, with the smallest number in a different position each time, to see
how the program chooses the lowest value.

An important situation arises with nested if statements. It may seem that
an else clause after a nested if could apply to either if statement. For
example:

if (code == 'R'")
if (height <= 20)
System.out.println ("Situation Normal");
else
System.out.println ("Bravo!");

137

138 CHAPTER 3 program statements

//**
// MinOfThree.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of nested if statements.
//**

import java.util.Scanner;

public class MinOfThree
{

// Reads three integers from the user and determines the smallest
// value.

public static void main (String[] args)
{
int numl, num2, num3, min = 0;
Scanner scan = new Scanner (System.in);

System.out.println ("Enter three integers: ");
numl = scan.nextInt();
num2 = scan.nextInt();
num3 = scan.nextInt();

if (numl < num2)
if (numl < num3)
min = numl;
else
min = num3;
else
if (num2 < num3)
min = num2;
else
min = num3;

System.out.println ("Minimum value: " + min);

—

3.3 boolean expressions revisited 139

Is the else clause matched to the inner if statement or the outer if state-
ment? The indentation in this example seems to mean that it is part of the
inner if statement, and that is correct. An else clause is always matched to
the closest unmatched if that came before it. However, if we’re not careful,
we can easily mismatch it in our mind and imply our intentions, but not real-
ity, by misaligned indentation. This is another reason why accurate, consis-
tent indentation is so important.

Braces can be used to show which if statement belongs with which
K Rk In a nested if statement, an
else clause. For example, if our example had been written so that the [} .. dause is matched to the
string "Bravo! " is printed if code is not equal to 'R', we could force closest unmatched i .
that relationship (and properly indent) as follows:

1dasu0d
oy

if (code == 'R"')
{
if (height <= 20)
System.out.println ("Situation Normal");

}

else
System.out.println ("Bravo!");

By using the block statement in the first if statement, we establish that the
else clause belongs to it.

3.3 boolean expressions revisited

Let’s look at a few more uses of boolean expressions.

logical operators

In addition to the equality and relational operators, Java has three logical
operators that produce boolean results. They also take boolean operands.
Figure 3.3 lists and describes the logical operators.

Operator Description Example Result
! logical NOT I a true if a is false and false if a is true
&& logical AND a && b true if a and b are both true and false otherwise
| | logical OR a | | b true if a or b or both are true and false otherwise

figure 3.3 Java logical operators

140

CHAPTER 3

program statements

The ! operator is used to perform the logical NOT operation, which is
also called the logical complement. The logical complement of a boolean
value gives its opposite value. That is, if a boolean variable called found has
the value false, then ! found is true. Likewise, if found is true, then ! found
is false. The logical NOT operation does not change the value stored in
found.

A logical operation can be described by a truth table that lists all the com-
binations of values for the variables involved in an expression. Because the
logical NOT operator is unary, there are only two possible values for its one
operand, true or false. Figure 3.4 shows a truth table that describes the !
operator.

The && operator performs a logical AND operation. The result is true if
both operands are true, but false otherwise. Since it is a binary operator
and each operand has two possible values, there are four combinations to
consider.

The result of the logical OR operator (| |) is true if one or the other or
both operands are true, but false otherwise. It is also a binary operator.
Figure 3.5 is a truth table that shows both the && and | | operators.

The logical NOT has the highest precedence of the three logical operators,
followed by logical AND, then logical OR.

Logical operators are often used as part of a condition for a selection or
repetition statement. For example, consider the following if statement:

if (!done && (count > MAX))
System.out.println ("Completed.");

Under what conditions would the println statement be executed? The
value of the boolean variable done is either true or false, and the NOT oper-
ator reverses that value. The value of count is either greater than MAX or it
isn’t. The truth table in Figure 3.6 shows all of the possibilities.

false true

true false

figure 3.4 Truth table describing the logical NOT operator

3.3 boolean expressions revisited 141

false false false false
false true false true
true false false true
true true true true

figure 3.5 Truth table describing the logical AND and OR operators

An important characteristic of the && and || operators is that they are
“short-circuited.” That is, if their left operand is enough to decide the
boolean result of the operation, the right operand is not evaluated. This sit-
uation can occur with both operators but for different reasons. If the
left operand of the && operator is false, then the result of the opera- Logical operators return a
tion will be false no matter what the value of the right operand is. E:;’!f::g;llzesz';iiz?cggzn
Likewise, if the left operand of the || is true, then the result of the conditions.

operation is true no matter what the value of the right operand is.

1daxu0d
£y

This can be very useful. For example, the condition in the following if
statement will not try to divide by zero if the left operand is false. If count
has the value zero, the left side of the && operation is false; so the whole
expression is false and the right side is not evaluated.

if (count != 0 && total/count > MAX)
System.out.println ("Testing.");

Be careful when you use these programming language characteristics. Not
all programming languages work the same way. As we have mentioned sev-
eral times, you should always make it clear to the reader exactly how the
logic of your program works.

done count > MAX !done !done && (count > MAX)

false false true false
false true true true

true false false false
true true false false

figure 3.6 A truth table for a specific condition

142

CHAPTER 3

The order of characters in Java
is defined by the Unicode
character set.

program statements

comparing characters and strings

We know what it means when we say that one number is less than another,
but what does it mean to say one character is less than another? As we dis-
cussed in Chapter 2, characters in Java are based on the Unicode character
set, which orders all possible characters that can be used. Because the char-
acter 'a' comes before the character 'b' in the character set, we can say
that *a" is less than 'b".

We can use the equality and relational operators on character data. For
example, if two character variables, chl and ch2, hold the values of two
characters, we might determine their order in the Unicode character set with
an if statement as follows:

if (chl > ch2)

System.out.println (chl + " is greater than " + ch2);
else

System.out.println (chl + " is NOT greater than " + ch2);

In the Unicode character set all lowercase alphabetic characters ('a"
through 'z') are in alphabetical order. The same is true of uppercase
alphabetic characters ('A' through 'z') and digits (*'0' through
'9'). The digits come before the uppercase alphabetic characters,
which come before the lowercase alphabetic characters. Before, after, and in
between these groups are other characters. (See the chart in Appendix B.)

This makes it easy to sort characters and strings of characters. If you have
a list of names, for instance, you can put them in alphabetical order based
on the relationships in the character set.

However, you should not use the equality or relational operators to com-
pare String objects. The String class has a method called equals that
returns a boolean value that is true if the two strings contain exactly the
same characters, and false if they do not. For example:

if (namel.equals(name2))

System.out.println ("The names are the same.");
else

System.out.println ("The names are not the same.");

Assuming that namel and name2 are String objects, this condition
determines whether the characters they contain are exactly the same. Because
both objects were created from the String class, they both respond to the
equals message. Therefore we could have written the condition as
name2.equals (namel) and gotten the same result.

We could test the condition (namel == name2), but that actually tests
to see whether both reference variables refer to the same String object.

3.3 boolean expressions revisited 143

That is, the == operator tests whether both reference variables contain the
same address. That’s different than testing to see whether two different
String objects contain the same characters. We discuss this in more detail
later in the book.

To determine the relative ordering of two strings, use the compareTo
method of the String class. The compareTo method is more flexible than
the equals method. Instead of returning a boolean value, the compareTo
method returns a number. The return value is negative if the first String
object (namel) is less than the second string (name2). The return value is
zero if the two strings contain the same characters. The return value is posi-
tive if the first String object is greater than the second string. For example:

int result = namel.compareTo(name2);
if (result < 0)
System.out.println (namel + " comes before " + name2);

else
if (result == 0)
System.out.println ("The names are equal.");
else

System.out.println (namel + " follows " + name2);

Keep in mind that comparing characters and strings is based on the
Umco.de character set (se{e Appendix B). Tbls is called a lexicographic The compareTo method
ordering. If all alphabetic characters are in the same case (upper or determines lexicographic order;
lower), the lexicographic ordering will be alphabetic. However, when which does not correspond

. . " " " " exactly to alphabetical order.

comparing two strings, such as "able" and "Baker", the
compareTo method will conclude that "Baker" comes first because
all of the uppercase letters come before all of the lowercase letters in the
Unicode character set. A string that is the prefix of another, longer string is
considered to precede the longer string. For example, when comparing two
strings such as "horse" and "horsefly", the compareTo method will
conclude that "horse" comes first.

1dacu0d
£y

comparing floating point values

Another interesting situation occurs when floating point data is compared.
Specifically, you should rarely use the equality operator (==) when compar-
ing floating point values. Two floating point values are equal, according to
the == operator, only if all the binary digits of their underlying representa-
tions match. If the compared values are the results of computation, they may
not be exactly equal. For example, 5.349 is not equal to 5.3490001.

144

CHAPTER 3

program statements

A better way to check for floating point equality is to get the absolute
value of the difference between the two values and compare the result to
some tolerance level. For example, we may choose a tolerance level of
0.00001. If the two floating point values are so close that their difference is
less than the tolerance, then we may consider them equal. For example, two
floating point values, £1 and £2, could be compared as follows:

if (Math.abs(fl - f2) < TOLERANCE)
System.out.println ("Essentially equal.");

The value of the constant TOLERANCE should be appropriate for the
situation.

3.4 more operators

Let’s look at a few more Java operators to give us even more ways to express
our program commands. Some of these operators are commonly used in loop
processing.

increment and decrement operators

The increment operator (++) adds 1 to any integer or floating point value.
The two plus signs cannot be separated by white space. The decrement oper-
ator (--) is similar except that it subtracts 1 from the value. The increment
and decrement operators are both unary operators because they operate on
only one operand. The following statement causes the value of count to be
increased by one, or incremented.

count++;

The result is stored back in the variable count. Therefore this statement is
the same as the following statement:

count = count + 1;

assignment operators

Several assignment operators in Java combine a basic operation with assign-
ment. For example, the += operator can be used as follows:

total += 5;

3.4 more operators

This does the thing as the following statement:
total = total + 5;

The right-hand side of the assignment operator can be a full expression. The
expression on the right-hand side of the operator is evaluated, then that
result is added to the current value of the variable on the left-hand side, and
that value is stored in the variable. So the following statement:

total += (sum - 12) / count;
is the same as:
total = total + ((sum - 12) / count);

Many similar Java assignment operators are listed in Figure 3.7.

All of the assignment operators evaluate the expression on the right-hand
side first, then use the result as the right operand of the other operation. So
the following statement:

result *= countl + count2;
is the same as:

result = result * (countl + count2);
Likewise, the following statement:

result %= (highest - 40) / 2;
is the same as:

result = result % ((highest - 40) / 2);

Operator Description Example Equivalent Expression

= assignment X =y X =y

+= addition, then assignment X +=y X =x+y
+= string concatenation, then assignment X +=y X =x+y
-= subtraction, then assignment X -=y X =X -y
*= multiplication, then assignment X *=y X =X *y
/= division, then assignment X /=y x=x/Yy
%= remainder, then assignment X %=y X =X %Yy

figure 3.7 Java assignment operators

145

146

et

(=9
>\8
=
xo
v

CHAPTER 3 program statements

A while statement lets a
program execute the same
statement many times.

Some assignment operators have special functions depending on the types
of the operands, just as regular operators do. For example, if the operands
to the += operator are strings, then the assignment operator performs string
concatenation.

3.5 the while statement

As we discussed earlier in this chapter, a repetition statement (or loop) lets us

execute a statement as many times as we need to. A while statement is a loop

that evaluates a boolean condition—just like an if statement does—and exe-

cutes a statement (called the body of the loop) if the condition is true.
However, unlike the if statement, after the body is executed, the con-
dition is evaluated again. If it is still true, the body is executed again.
This repeats until the condition becomes false; then processing contin-
ues with the statement after the body of the while loop. Figure 3.8
shows this processing.

The Counter program shown in Listing 3.5 simply prints the values
from 1 to 5. Each turn through the loop prints one value, then increases
the counter by one. A constant called LIMIT holds the maximum value
that count is allowed to reach. The condition of the while loop,
(count <= LIMIT), means that the loop will keep going as long as count
is less than or equal to LIMIT. Once count reaches the limit, the condition
is false an the loop quits.

Note that the body of the while loop is a block containing two state-
ments. Because the value of count is increased by one each time, we are
guaranteed that count will eventually reach the value of LIMIT.

1

condition
evaluated

true false

statement

—

figure 3.8 The logic of a while loop

3.5 the while statement 147

//**

// Counter.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a while loop.
//**

public class Counter

{
[
// Prints integer values from 1 to a specific limit.
[/
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 1;

while (count <= LIMIT)

{
System.out.println (count);
count = count + 1;

}

System.out.println ("Done");

—

Let’s look at another program that uses a while loop. The Average pro-
gram shown in Listing 3.6 reads integer values from the user, adds them up,
and computes their average.

We don’t know how many values the user may enter, so we need to have
a way to show that the user is done. In this program, we pick zero to be a
sentinel value, which is a value that shows the end of the input the way a sen-
tinel stands guard at the gate of a fort or perimeter of an army’s camp. The
while loop continues to process input values until the user enters zero. This
assumes that zero is not one of the valid numbers that should contribute to

148 CHAPTER 3 program statements

Tlisting

//*‘k****‘k*‘k**'k***‘k**'k*‘k*‘k'k*'k*‘k*‘k**'k*‘k****'k*‘k******************‘k******‘k
// Average.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a while loop, a sentinel value, and a

// running sum.
//*********'k******'k***

import java.text.DecimalFormat;
import java.util.Scanner;

public class Average

{

// Computes the average of a set of values entered by the user.
// The running sum is printed as the numbers are entered.

public static void main (String[] args)

{

int sum = 0, value, count = 0;
double average;
Scanner scan = new Scanner (System.in);

System.out.print ("Enter an integer (0 to quit): ");
value = scan.nextInt();

while (value != 0) // sentinel value of 0 to terminate loop

{

count++;

sum += value;
System.out.println ("The sum so far is " + sum);

System.out.print ("Enter an integer (0 to quit): ");
value = scan.nextInt();
¥
System.out.println ();
System.out.println ("Number of values entered: " + count);
average = (double)sum / count;

DecimalFormat fmt = new DecimalFormat ("O.###");

3.5 the while statement 149

continued

System.out.println ("The average is " + fmt.format(average));

150

key
concept

CHAPTER 3 program statements

the average. A sentinel value must always be outside the normal range of val-
ues entered.

Note that in the Average program in Listing 3.6, a variable called sum is
used to keep a running sum, which means it is the total of the values entered
so far. The variable sum starts at zero, and each value read is added to and
stored back into sum.

We also have to count the number of values that are entered so that after
the loop finishes we can divide by the right number to get the average. Note
that the sentinel value is not counted. But what if the user immediately enters
the sentinel value before entering any valid values? The value of count in
this case will still be zero and the computation of the average will result in a
runtime error. Fixing this problem is left as a programming project.

Let’s look at another program that uses a while loop. The
WinPercentage program shown in Listing 3.7 computes the winning per-
centage of a sports team based on the number of games won.

We use a while loop in the winPercentage program to validate the
input, meaning we guarantee that the user enters a value that we consider to
be valid. In this example, that means that the number of games won must be
greater than or equal to zero and less than or equal to the total number of
games played. The while loop keeps executing, repeatedly asking the user
for valid input, until the entered number is indeed valid.

Validating input data, avoiding errors such as dividing by zero, and per-
forming other actions that guarantee proper processing are important design
steps. We generally want our programs to be robust, which means that they
handle errors—even user errors—well.

infinite loops

The programmer must make sure that the condition of a loop will eventually
become false. If it doesn’t, the loop will keep going forever, or at least until
the program is interrupted. This situation, called an infinite loop, is a

We must design our programs common mistake.

carefully to avoid infinite loops.

The loop condition must
eventually become false.

The program shown in Listing 3.8 has an infinite loop. If you exe-
cute this program, you will have to interrupt it to make it stop. On
most systems, pressing the Control-C keyboard combination (hold
down the Control key and press C) stops a running program.

In the Forever program in Listing 3.8, the starting value of count is 1
and it is subtracted from, or decremented, in the loop body. The while loop
will continue as long as count is less than or equal to 25. Because count
gets smaller with each iteration, the condition will always be true.

3.5 the while statement 151

//**

// WinPercentage.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a while loop for input validation.
//***************'k**

import java.text.NumberFormat;
import java.util.Scanner;

public class WinPercentage

{
.
// Computes the percentage of games won by a team.
B E———————.—.—
public static void main (String[] args)
{

final int NUM_GAMES = 12;

int wonj;

double ratio;

Scanner scan = new Scanner (System.in);

System.out.print ("Enter the number of games won (0 to "
+ NUM_GAMES + "): ");

won = scan.nextInt();

while (won < 0 || won > NUM_GAMES)

{
System.out.print ("Invalid input. Please reenter: ");

won = scan.nextInt();
ratio = (double)won / NUM_GAMES;
NumberFormat fmt = NumberFormat.getPercentInstance();

System.out.println ();
System.out.println ("Winning percentage: " + fmt.format(ratio));

—

152 CHAPTER 3 program statements

//**

// TForever.java Author: Lewis/Loftus/Cocking
//
// Demonstrates an INFINITE LOOP. WARNING!!

//**

public class Forever

{
/] m e
// Prints ever-decreasing integers in an INFINITE LOOP!
] -
public static void main (String[] args)
{

int count = 1;
while (count <= 25)

{

System.out.println (count);
count = count - 1;

System.out.println ("Done"); // this statement is never reached

—

Let’s look at some other examples of infinite loops:

int count = 1;
while (count != 50)
count += 2;

3.5 the while statement

In this code fragment, the variable count begins at 1 and moves in a posi-
tive direction. However, note that it is increased by 2 each time. This loop
will never terminate because count will never equal 50. It begins at 1 and
then changes to 3, then 5, and so on. Eventually it reaches 49, then changes
to 51, then 53, and continues forever.

Now consider the following situation:

double num = 1.0;
while (num != 0.0)
num = num — 0.1;

Once again, the value of the loop control variable seems to be moving in the
right direction. And, in fact, it seems like num will eventually take on the
value 0.0. However, this loop is infinite (at least on most systems) because
num will never have a value exactly equal to 0.0. This situation is like the
one we discussed earlier in this chapter when we compared floating point
values in the condition of an if statement. Because of the way the values are
represented in binary, tiny differences make comparing floating point values
(for equality) a problem.

nested loops

The body of a loop can contain another loop. This situation is called a nested
loop. Keep in mind that each time the outer loop executes once, the inner
loop executes completely. Consider the following code fragment. How many
times does the string "Here again" get printed?

int countl, count2;

countl = 1;
while (countl <= 10)
{

count2 = 1;
while (count2 <= 50)

{
System.out.println ("Here again");
count2++;

¥

countl++;

b

The println statement is inside the inner loop. The outer loop executes 10
times, as countl iterates between 1 and 10. The inner loop executes 50
times, as count?2 iterates between 1 and 50. Each time the outer loop exe-
cutes, the inner loop executes completely. So the println statement is exe-
cuted 500 times.

153

154

CHAPTER 3

program statements

As with any loop, we must study the conditions of the loops and the ini-
tializations of variables. Let’s consider some small changes to this code.
What if the condition of the outer loop were (countl < 10) instead of
(countl <= 10)? How would that change the total number of lines
printed? Well, the outer loop would execute 9 times instead of 10, so the
println statement would be executed 450 times. What if the outer loop
were left as it was originally defined, but count2 were initialized to 10
instead of 1 before the inner loop? The inner loop would then execute 40
times instead of 50, so the total number of lines printed would be 400.

Let’s look at another example of a nested loop. A palindrome is a string
of characters that reads the same forward or backward. For example, the fol-
lowing strings are palindromes:

» radar

» drab bard

» ab cde xxxx edc ba
» kayak

» deified

» able was I ere I saw elba

Note that some palindromes have an even number of characters, whereas
others have an odd number of characters. The PalindromeTester pro-
gram shown in Listing 3.9 tests to see whether a string is a palindrome. Users
may test as many strings as they want.

The code for PalindromeTester contains two loops, one inside the
other. The outer loop controls how many strings are tested, and the inner
loop scans through each string, character by character, until it determines
whether the string is a palindrome.

The variables 1eft and right store the indexes of two characters. At first
they indicate the characters on either end of the string. Each execution of the
inner loop compares the two characters indicated by left and right. We
fall out of the inner loop when either the characters don’t match, meaning the
string is not a palindrome, or when the value of left becomes equal to or
greater than the value of right, which means the entire string has been tested
and it is a palindrome.

3.5 the while statement

Tisting

//**

// PalindromeTester.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of nested while loops.
//**

import java.util.Scanner;

public class PalindromeTester

{
/] -
// Tests strings to see if they are palindromes.
-
public static void main (String[] args)
{
String str, another = "y";

int left, right;
Scanner scan = new Scanner (System.in);

while (another.equalsIgnoreCase("y")) // allows y or Y

{
System.out.println ("Enter a potential palindrome:");
str = scan.nextLine();

left = 0;
right = str.length() - 1;

while (str.charAt(left) == str.charAt(right) && left < right)
{

left++;

right--;

System.out.println();

if (left < right)

System.out.println ("That string is NOT a palindrome.");
else

System.out.println ("That string IS a palindrome.");

System.out.println();
System.out.print ("Test another palindrome (y/n)? ");
another = scan.nextLine();

155

156 CHAPTER 3 program statements

continued

Note that the following phrases would not be considered palindromes by
the current version of the program:

» A man, a plan, a canal, Panama.
» Dennis and Edna sinned.

» Rise to vote, sir.

» Doom an evil deed, liven a mood.

» Go hang a salami; 'm a lasagna hog.

3.6 iterators

These strings fail our rules for a palindrome because of the spaces, punctua-
tion marks, and changes in uppercase and lowercase. However, if these were
removed or ignored, these strings read the same forward and backward.
Consider how the program could be changed to handle these situations.
These changes are left as a programming project at the end of the chapter.

3.6 1iterators

An iterator is an object that has methods that allow you to process a collec-

tion of items one at a time. That is, an iterator lets you step through each

item and interact with it as needed. For example, your goal may be to

compute the dues for each member of a club, or print the distinct , _ _

. . . . An iterator is an object that
parts of a URL. The key is that an iterator provides a consistent and pai¢ you process a group of
simple mechanism for systematically processing a group of items. related items.

Since it is inherently a repetitive process, it is closely related to the
idea of loops.

Technically an iterator object in Java is defined using the Iterator inter-
face; interfaces are discussed in Chapter 5. For now it is simply helpful to
know that such objects exist and that they can make the processing of a col-
lection of items easier.

Every iterator object has a method called hasNext that returns a boolean
value indicating if there is at least one more item to process. Therefore the
hasNext method can be used as a condition of a loop to control the pro-
cessing of each item. An iterator also has a method called next to retrieve
the next item in the collection to process.

There are several classes in the Java standard class library that define iter-
ator objects. One of these is Scanner, a class we’ve used several times in pre-
vious examples to help us read data from the user. The hasNext method of
the Scanner class returns true if there is another input token to process.
And, as we’ve seen previously, it has a next method that returns the next
input token as a string.

The Scanner class also has specific variations of the hasNext method,
such as the hasNextInt and hasNextDouble methods, which allow you to
determine if the next input token is a particular type. Likewise, as we’ve
seen, there are variations of the next method, such as nextInt and
nextDouble, that retrieve values of specific types.

When reading input interactively from the standard input stream, the
hasNext method of the Scanner class will wait until there is input avail-
able, then return true. That is, when input is read from the keyboard it is
always thought to have more data to process—it just hasn’t arrived yet until

157

1d9su0d
oy

158

CHAPTER 3 program statements

the user types it in. That’s why in previous examples we’ve used special sen-
tinel values to determine the end of interactive input.

However, the fact that a Scanner object is an iterator is particularly help-
ful when the scanner is being used to process input from a source that has a
specific end point, such as processing the lines of a data file or processing the
parts of a character string. Let’s examine an example of this type of
processing.

reading text files

Suppose we have an input file called urls. inp that contains a list of URLs
that we want to process in some way. The following are the first few lines of
urls.inp:

www.google.com

java.sun.com/j2se/1.5
www.linux.org/info/gnu.html
duke.csc.villanova.edu/lewis/
www.csc.villanova.edu/academics/index.jsp

The program shown in Listing 3.10 reads the URLs from this file and dis-
sects them to show the various parts of the path. It uses a Scanner object to
process the input. In fact, it uses multiple Scanner objects—one to read the
lines of the data file, and another to process each URL string.

Tisting
//***‘k******‘k******‘k****‘k*‘k****‘k*‘k****‘k******‘k******‘k******‘k******‘k***
// URLDissector.java Author: Lewis/Loftus/Cocking

//

// Demonstrates the use of Scanner to read file input and parse it

// using alternative delimiters.
//**'k‘k'k****'k‘k'k***‘k'k‘k'k***‘k'k*‘k***‘k*****'k‘k**‘k**'k‘k*********‘k***‘k****‘k**‘k**

import java.util.Scanner;
import java.io.*;

public class URLDissector

3.6 iterators

continued

public static void main (String[] args) throws IOException

{
String url;
Scanner fileScan, urlScan;

fileScan = new Scanner (new File("urls.inp"));

// Read and process each line of the file
while (fileScan.hasNext())
{
url = fileScan.nextLine();
System.out.println ("URL: " + url);

urlScan = new Scanner (url);
urlScan.useDelimiter("/");

// Print each part of the url
while (urlScan.hasNext())

System.out.println (" " + urlScan.next());

System.out.println();

}
¥
}

159

160

-

(=5
>~8
=
= 3

o

CHAPTER 3 program statements

A for statement is usually

There are two while loops in this program, one nested within the other.
The outer loop processes each line in the file, and the inner loop processes
each token in the current line.

The variable fileScan is created as a scanner that operates on the input
file named urls. inp. Instead of passing System. in into the Scanner con-
structor, we instantiate a File object that represents the input file and pass
it into the Scanner constructor. At that point, the £ileScan object is ready
to read and process input from the input file.

If for some reason there is a problem finding or opening the input file, the
attempt to create a File object will throw an IOException, which is why
we’ve added the throws IOException clause to the main method header.
The details of file /O, however, are beyond the scope of this book; excep-
tions will be introduced in Chapter 5.

The body of the outer while loop will be executed as long as the
hasNext method of the input file scanner returns true—that is, as long as
there is more input in the data file to process. Each iteration through the loop
reads one line (one URL) from the input file and prints it out.

For each URL, a new Scanner object is set up to parse the pieces of the
URL string, which is passed to the Scanner constructor when instantiating
the urlscan object. The inner while loop prints each token of the URL on
a separate line.

Recall that, by default, a Scanner object assumes that white space (spaces,
tabs, and new lines) is used as the delimiters separating the input tokens. If
the default delimiters do not suffice, as in the processing of a URL in this
example, they can be changed.

In this case, we are interested in each part of the path separated by the
slash (/) character. A call to the useDelimiter method of the scanner sets
the delimiter to a slash prior to processing the URL string.

3.7 the for statement

The while statement is good to use when you don’t know how many

used when we know how many ~ times you want to execute the loop body. The for statement is a repeti-
times a loop will be executed. tion statement that works well when you do know exactly how many

times you want to execute the loop.

The Counter2 program shown in Listing 3.11 once again prints the num-
bers 1 through 5, except this time we use a for loop to do it.

The header of a for loop has three parts, separated by semicolons.
Before the loop begins, the first part of the header, called the initialization,

3.7 the for statement 161

//**

// Counter2.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a for loop.
//**************'k***

public class Counter2

{
[/
// Prints integer values from 1 to a specific limit.
[
public static void main (String[] args)
{

final int LIMIT = 5;

for (int count=1; count <= LIMIT; count++)
System.out.println (count);

System.out.println ("Done");

}

—

is executed. The second part of the header is the boolean condition. If the
condition is true, the body of the loop is executed, followed by the third
part of the header, which is called the increment. Note that the initialization
part is executed only once, but the increment part is executed each time.
Figure 3.9 shows this processing.

A for loop can be a bit tricky to read until you get used to it. The execu-
tion of the code doesn’t follow a “top to bottom, left to right” reading. The
increment code executes after the body of the loop, even though it is in the

header.

Note how the three parts of the for loop header match the parts of the
original Counter program that uses a while loop. The initialization part of

162 CHAPTER 3 program statements

|

initialization

|

condition
o —
evaluated

true false

:

statement

l

— increment

—

figure 3.9 The logic of a for loop

the for loop header declares the variable count as well as gives it a begin-
ning value. We don’t have to declare a variable there, but it is common prac-
tice when the variable is not needed outside the loop. Because count is
declared in the for loop header, it exists only inside the loop body and can’t
be referenced elsewhere. The loop control variable is set up, checked, and
changed by the actions in the loop header. It can be referenced inside the loop

body, but it should not be changed except by the actions defined in the loop
header.

The increment part of the for loop header, in spite of its name, could
decrement a value rather than increment it. For example, the following loop
prints the integer values from 100 down to 1:

for (int num = 100; num > 0; num--)
System.out.println (num);

In fact, the increment part of the for loop can do any calculation, not just
a simple increment or decrement. Look at the program in Listing 3.12, which
prints multiples of a particular value up to a limit.

The increment part of the for loop adds the value entered by the user. The
number of values printed per line is controlled by counting the values printed
and then moving to the next line whenever count is evenly divisible by the
PER_LINE constant.

3.7 the for statement 163

() O e
For Update

Local Variable Declaration Statement Expression

Statement Expression ()

//**

// Multiples.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a for loop.
//**

import java.util.Scanner;

public class Multiples
{

// Prints multiples of a user-specified number up to a user-
// specified limit.

public static void main (String[] args)

{
final int PER_LINE = 5;
int value, limit, mult, count = 0;

164 CHAPTER 3 program statements

continued

Scanner scan = new Scanner (System.in);

System.out.print ("Enter a positive value: ");
value = scan.nextInt();

System.out.print ("Enter an upper limit: ");
limit = scan.nextInt();

System.out.println ();
System.out.println ("The multiples of " + value + " between " +
value + " and " + limit + " (inclusive) are:");

for (mult = value; mult <= limit; mult += value)

{
System.out.print (mult + "\t");

// Print a specific number of values per line of output
count++;
if (count % PER_LINE == 0)

System.out.println();

}
¥
}

The Stars program in Listing 3.13 shows the use of nested for loops.
The output is a triangle made of asterisks. The outer loop executes exactly
10 times, each time printing one line of asterisks. The inner loop has a

3.7 the for statement 165

//**

// Stars.java Author: Lewis/Loftus/Cocking
/7

// Demonstrates the use of nested for loops.
//**

public class Stars

{

public static void main (String[] args)

{
final int MAX ROWS = 10;

for (int row = 1; row <= MAX ROWS; row++)
{
for (int star = 1; star <= row; star++)

System.out.print ("*");

System.out.println();

—

different number of iterations depending on the line value controlled by the
outer loop. Each time it executes, the inner loop prints one star on the cur-
rent line. Variations on this triangle program are included in the projects at
the end of the chapter.

166

CHAPTER 3

program statements

iterators and for loops

In section 3.6 we discussed that some objects are considered to be iterators,
which have hasNext and next methods to process each item from a group.
A variation of the for loop lets us process the items in an iterator without
the complicated syntax.

For example, if BookList is an iterator object that manages Book objects,
we can use a for loop to process each Book object in the iterator as follows:

for (Book myBook : BookList)
System.out.println (myBook);

This version of the for loop is referred to as a foreach statement. It
processes each object in the iterator in turn. It is equivalent to the following:

Book myBook;
while (BookList.hasNext())

{
myBook = BookList.next();

System.out.println (myBook);
}

This version of the for loop can also be used on arrays, which are dis-
cussed in Chapter 6, and on enumerated types. The IceCreamShop program
in Listing 3.14 shows the use of a foreach loop to print all the possible val-
ues of an enumerated type. As we mentioned in Chapter 2, enumerated types
are actually a special kind of class. The values method is used to get the list
of all possible values of the enumerated type (Flavor in this case), which the
foreach loop then iterates through.

comparing loops
The while and for loop statements are about the same: any loop written

using one type of loop statement can be written using the other loop type.
Which type of statement we use depends on the situation.

A for loop is like a while loop in that the condition is evaluated before
the loop body is executed. Figure 3.10 shows the general structure of for
and while loops.

We generally use a for loop when we know how many times we want to
go through a loop. Most of the time it is easier to put the code that sets up
and controls the loop in the for loop header.

3.7 the for statement 167

//**

// IceCreamShop.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of a foreach loop on an enumerated type.
//**

public class IceCreamShop
{
enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,
rockyRoad, mintChocolateChip, cookieDough}

[— e
// Prints the flavors of ice cream available.

/e e
public static void main (String[] args)

{

System.out.println ("Welcome to the Ice Cream Shop!");
System.out.println ();

System.out.println ("We have the following flavors:");
for (Flavor f: Flavor.values())

{
System.out.println(f);

}

—

168 CHAPTER 3 program statements

for (initialization; condition; increment) initialization;
statement; while (condition)
{
statement;
increment;
}

figure 3.10 The general structure of equivalent for and while loops

3.8 program development revisited

Now let’s apply what we know to program development. Suppose a teacher
wants a program that will analyze exam scores. The requirements are first
given as follows. The program will:

» accept a series of test scores as input
» compute the average test score
» determine the highest and lowest test scores

» display the average, highest, and lowest test scores

Our first task is to look at the requirements. The requirements raise ques-
tions that need to be answered before we can design a solution.
Understanding the requirements often means talking with the client. The
client may very well have a clear idea of what the program should do, but
this list of requirements does not provide enough detail.

For example, how many test scores should be processed? Will this pro-
gram handle only one class size or should it handle different size classes? Is
the input stored in a data file or will it be entered by the teacher, using the
keyboard? What degree of accuracy does the teacher expect: two decimal
places? Three? None? Should the output be in any particular format?

Let’s assume we know that the program needs to handle a different num-
ber of test scores each time it is run and that the input will be entered by the
teacher. The teacher wants the average presented to two decimal places, but
lets us (the developer) pick the format.

Now let’s consider some design questions. Because there is no limit to the
number of grades that can be entered, how should the user indicate that there
are no more grades? We can address this several ways. The program could
ask the user, after each grade is entered, if there are more grades to process.
Or the program could begin by asking the user for the total number of grades

3.8 program development

that will be entered, then read exactly that many grades. Or, when prompted
for a grade, the teacher could enter a sentinel value to say that there are no
more grades to be entered.

The first option requires a lot more input from the user, which is too awk-
ward. The second option means the user must know exactly how many
grades to enter and better not make any mistakes. The third option is rea-
sonable, but before we can pick a sentinel value to end the input, we must
ask more questions. What is the range of valid grades? What would be a
good sentinel value? Talking with the client again, we learn that a student
cannot get a negative grade, so we can use —1 as a sentinel value.

Let’s sketch out an algorithm for this program. The pseudocode for a pro-
gram that reads in a list of grades and computes their average might look like
this:

prompt for and read the first grade
while (grade does not equal -1)

{

increment count

sum = sum + grade

prompt for and read another grade
}

average = sum / count
print average

This algorithm only calculates the average grade. Now we must change the
algorithm to compute the highest and lowest grade. Further, the algorithm
does not deal well with the unusual case of entering —1 for the first grade.
We can use two variables, max and min, to keep track of the highest and low-
est scores. The new pseudocode looks like this:

prompt for and read the first grade

max = min = grade
while (grade does not equal -1)
{

increment count
sum = sum + grade
if (grade > max)
max = grade
if (grade < min)
min = grade
prompt for and read another grade

if (count is not zero)

average = sum / count
print average, highest, and lowest grades

revisited

169

170 CHAPTER 3 program statements

Having planned out an algorithm for the program, we can start implement-
ing it. Consider the solution to this problem shown in Listing 3.15.

Tlisting

3.15
//**
// ExamGrades.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of various control structures.
//**

import java.text.DecimalFormat;
import java.util.Scanner;

public class ExamGrades

{

// Computes the average, minimum, and maximum of a set of exam
// scores entered by the user.

public static void main (String[] args)

{
int grade, count = 0, sum = 0, max, min;
double average;
Scanner scan = new Scanner (System.in);

// Get the first grade and give max and min that initial value
System.out.print ("Enter the first grade (-1 to quit): ");
grade = scan.nextInt();

max = min = grade;

// Read and process the rest of the grades
while (grade >= 0)
{

count++;

sum += grade;

if (grade > max)
max = grade;
else
if (grade < min)
min = grade;

System.out.print ("Enter the next grade (-1 to quit): ");
grade = scan.nextInt ();

3.8 program development revisited 171

continued

// Produce the final results

if (count == 0)

System.out.println ("No valid grades were entered.");
else
{

DecimalFormat fmt = new DecimalFormat ("O.##");

average = (double)sum / count;

System.out.println();

System.out.println ("Total number of students: " + count);

System.out.println ("Average grade: " + fmt.format(average));
System.out.println ("Highest grade: " + max);
System.out.println ("Lowest grade: " + min);

—

Let’s look at how this program does what the teacher wanted. After the
variable declarations in the main method, we ask the user to enter the first
grade. Prompts should tell the user about any special input requirements. In
this case, we tell the user that entering —1 will indicate the end of the input.

The variables max and min are set to the first value entered. This is done
using chained assignments. An assignment statement returns a value and can

172

GRAPHICS TRACK

CHAPTER 3

program statements

be used as an expression. The value returned by an assignment statement is
the value that gets assigned. Therefore, the value of grade is first assigned
to min, then that value is assigned to max. If no larger or smaller grade is
ever entered, the values of max and min will not change.

The while loop condition says that the loop body will be executed as
long as the grade being processed is greater than or equal to zero. Therefore,
any negative value will indicate the end of the input, even though the prompt
tells the user that only —1 will end the input. This change is a slight variation
on the original design and makes sure that no negative values will be counted
as grades.

We use a nested if structure to decide if the new grade should be the high-
est or lowest grade. It cannot be both, so using an else clause is slightly
more efficient. There is no need to ask whether the grade is a minimum if we
already know it is a maximum.

If at least one positive grade was entered, then count is not equal to zero
after the loop, and the else part of the if statement is executed. The aver-
age is computed by dividing the sum of the grades by the number of grades.
Note that the if statement keeps us from trying to divide by zero in situa-
tions where no valid grades are entered. As we’ve mentioned before, we want
to design robust programs that handle unexpected or wrong input without
causing a runtime error. The solution for this problem is robust up to a point
because it processes any numeric input without a problem, but it will fail if
a nonnumeric value (like a string) is entered at the grade prompt.

AP* case study

To work with the AP* Case Study section for this chapter, go to
www.aw.com/cssupport and look under author: Lewis/Loftus/Cocking.

an using conditionals

and loops

Conditionals and loops can help us create interesting graphics.

The program called Bullseye, shown in Listing 3.16, uses a loop to draw
the rings of a target. The Bullseye program uses an if statement to alter-
nate the colors between black and white. Each ring is drawn as a filled cir-
cle (an oval of equal width and length). Because we draw the circles on top
of each other, the inner circles cover the inner part of the larger circles, so
they look like rings. At the end, a final red circle is drawn for the bull’s-eye.

3.9 drawing using conditionals and Toops

//**
// Bullseye.java Author: Lewis/Loftus/Cocking
/7

// Demonstrates the use of conditionals and loops to guide drawing.
//**

import java.applet.Applet;
import java.awt.*;

public class Bullseye extends Applet

{
J A e et Tt
// Paints a bullseye target.
/ m e
public void paint (Graphics page)
{
final int MAX WIDTH = 300, NUM RINGS = 5, RING_WIDTH = 25;
int x = 0, y = 0, diameter;
setBackground (Color.cyan);
diameter = MAX WIDTH;
page.setColor (Color.white);
for (int count = 0; count < NUM _RINGS; count++)
{
if (page.getColor() == Color.black) // alternate colors
page.setColor (Color.white);
else
page.setColor (Color.black);
page.fillOval (x, y, diameter, diameter);
diameter -= (2 * RING_WIDTH);
X += RING_WIDTH;
y += RING_WIDTH;
}
// Draw the red bullseye in the center
page.setColor (Color.red);
page.filloval (x, y, diameter, diameter);
}

CHAPTER 3 program statements

continued

Listing 3.17 shows the Boxes applet, in which several randomly sized rec-
tangles are drawn in random locations. If the width of a rectangle is less than
5 pixels, the box is filled with the color yellow. If the height is less than 5 pix-
els, the box is filled with the color green. Otherwise, the box is drawn,
unfilled, in white.

Note that in the Boxes program, the color is decided before each rec-
tangle is drawn. In the BarHeights applet, shown in Listing 3.18, we han-
dle the situation differently. The goal of BarHeights is to draw 10 vertical
bars of random heights, coloring the tallest bar in red and the shortest bar
in yellow.

3.9 drawing using conditionals and Toops

//**

// Boxes.java Author: Lewis/Loftus/Cocking
!/

// Demonstrates the use of conditionals and loops to guide drawing.
//**

import java.applet.Applet;
import java.awt.*;
import java.util.Random;

public class Boxes extends Applet
{

// Paints boxes of random width and height in a random location.
// Narrow or short boxes are highlighted with a fill color.

public void paint(Graphics page)

{
final int NUM_BOXES = 50, THICKNESS = 5, MAX_SIDE = 50;
final int MAX X = 350, MAX Y = 250;
int x, y, width, height;

setBackground (Color.black);
Random generator = new Random();

for (int count = 0; count < NUM_BOXES; count++)
{

x = generator.nextInt (MAX X) + 1;

y generator.nextInt (MAX Y) + 1;

width = generator.nextInt (MAX SIDE) + 1;
height = generator.nextInt (MAX SIDE) + 1;

if (width <= THICKNESS) // check for narrow box

{
page.setColor (Color.yellow);
page.fillRect (x, y, width, height);
}
else
if (height <= THICKNESS) // check for short box
{

page.setColor (Color.green);
page.fillRect (x, y, width, height);

CHAPTER 3 program statements

continued

else

{
page.setColor (Color.white);
page.drawRect (x, y, width, height);

—

In the BarHeights program, we don’t know if the bar we are about to
draw is either the tallest or the shortest because we haven’t created them all
yet. Therefore we keep track of the position of both the tallest and shortest
bars as they are drawn. After all the bars are drawn, the program goes back
and redraws these two bars in the right color.

3.9 drawing using conditionals and Toops

//**

// BarHeights.java Author: Lewis/Loftus/Cocking
//

// Demonstrates the use of conditionals and loops to guide drawing.
//**

import java.applet.Applet;
import java.awt.*;
import java.util.Random;

public class BarHeights extends Applet
{

// Paints bars of varying heights, tracking the tallest and
// shortest bars, which are redrawn in color at the end.

public void paint (Graphics page)

{
final int NUM_BARS = 10, WIDTH = 30, MAX HEIGHT = 300, GAP =9;
int tallX = 0, tallest = 0, shortX = 0, shortest = MAX HEIGHT;
int x, height;

Random generator = new Random();
setBackground (Color.black);

page.setColor (Color.blue);
X = GAP;

for (int count = 0; count < NUM_BARS; count++)

{
height = generator.nextInt(MAX HEIGHT) + 1;
page.fillRect (x, MAX HEIGHT-height, WIDTH, height);

// Keep track of the tallest and shortest bars
if (height > tallest)
{

tallX = x;

tallest height;

if (height < shortest)
{
shortX = x;

shortest height;

CHAPTER 3 program statements

}

// Redraw the
page.setColor
page.fillRect

// Redraw the
page.setColor
page.fillRect

—

continued

X = x + WIDTH + GAP;

tallest bar in red
(Color.red);
(tallX, MAX_HEIGHT—tallest, WIDTH, tallest);

shortest bar in yellow
(Color.yellow);
(shortX, MAX HEIGHT-shortest, WIDTH, shortest);

summary of key concepts 179

key concepts

» Software requirements tell us what a program must do.

» A software design tells us how a program will fill its requirements.

» An algorithm is a step-by-step process for solving a problem, often
written in pseudocode.

» Implementation should be the least creative of all development
activities.

» The goal of testing is to find errors. We can never really be sure that
all errors have been found.

» Conditionals and loops let us control the flow of execution through a
method.

» An if statement lets a program choose whether to execute a par-
ticular statement.

» The compiler does not care about indentation. Indentation is impor-
tant for human readers because it shows the relationship between one
statement and another.

» An if-else statement lets a program do one thing if a condition is
true and another thing if the condition is false.

» In a nested if statement, an else clause is matched to the closest
unmatched if.

» Logical operators return a boolean value (true or false) and are often
used for sophisticated conditions.

» The order of characters in Java is defined by the Unicode character
set.

» The compareTo method determines the lexicographic order of
strings, which is not necessarily alphabetical order.

» A while statement lets a program execute the same statement over
and over.

» We must design our programs carefully to avoid infinite loops. The
body of the loop must eventually make the loop condition false.

» An iterator is an object that helps you process a group of related
items.

» A for statement is usually used when a loop will be executed a set
number of times.

180 CHAPTER 3 program statements

self-review questions

3.1 Name the four basic activities that are involved in a software
development process.

3.2 What is an algorithm? What is pseudocode?

3.3 What is meant by the flow of control through a program?

3.4 What type of conditions are conditionals and loops based on?
3.5 What are the equality operators? The relational operators?
3.6 What is a nested if statement? A nested loop?

3.7 How do block statements help us construct conditionals and
loops?

3.8 What is a truth table?
3.9 How do we compare strings for equality?

3.10 Why must we be careful when comparing floating point values
for equality?

3.11 What is an assignment operator?
3.12 What is an infinite loop? Specifically, what causes it?

3.13 When would we use a for loop instead of a while loop?

multiple choice
3.1 Which of the following statements increase the value of x by 1?
I. =x++;
II. x=x+ 1;
. x += 1;
a. I only
b. II only
c. T and III
d. I and IIT
e. I, II, and III

3.2 What will be printed by the following code segment?

3.3. The expression £ || g is the same as which of the following?
a. £ || !qg
b.t(f || 9)

3.4

boolean flag = true;

int x = -1;

if (flag && (x > 0))
System.out.println("yes");

else if (x == 0)
System.out.println("maybe");

else if (!flag)

System.out.println("sometimes");

else
System.out.println("no");

yes

ISR

. maybe

. sometimes

O

e

no

e. There will be an error because you can’t mix integers and

booleans in the same expression.

c. !'(f && qg)
d. ' ('f && !qg)
e. ' (f && !qg)

In the following code, what value should go in the blank so that

there will be exactly six lines of output?

for (int x = 0; x < ; x =X+ 2)
System.out.println("-");

a. s

b. 6

c. 10

d. 11

e. 13

multiple choice

181

182 CHAPTER 3 program statements

3.5 What will be the largest value printed by the following code?

for (int x=5; x > 0; x--)
for (int y=0; y < 8; y++)
System.out.println(x*y);

a. s

b. 8

c. 35

d. 40

e. 64

3.6 Assume x is an integer and has been initialized to some value.

Consider the code

for (int a = 1; a < 20; at+)

if (x < 0)

X = aj;

Which statement will have the same effect on the value of x?
a. if (x < 0) x = 1;
b.if (x < 20) x = 19;
c.if (x < 0) x = 19;
d.if (x < 20) x = 20;
e.x = 1;

3.7 Assume num and max are integer variables. Consider the code

while (num < max)
num++;

Which values of num and max will cause the body of the loop to
be executed exactly once?

a.num = 1, max = 1;
b.num = 1, max = 2;
C.num = 2, max = 2;
d.num = 2, max = 1;
e.num = 1, max = 3;

3.8 Which for loop is equivalent to this while loop?

int y = 5;
while (y >= 0)
{

System.out.println(y);

Y--i

(int y = 0;

System.out.

b. for (int y = 5;

System.out.

c. for (int y = 5;

System.out.

d. for (int y = 0;

System.out.

e. for (int y = 0;

System.out.

3.9 Which expression tests
100 inclusive?

a. (grade <= 100)
b. (grade <= 100)
c. (grade < 101) |

d. (grade <= 100) &&
e. (grade >= 100) &&

y < 5; y++)
println(y);
y > 0; y--)
println(y);
y >= 0; y--)
println(y);

Yy > 5; yt+)
println(y);
Yy > 5 y--)
println(y);

to make sure the grade is between 0 and

|| (graph <= 0)
|| (graph >= 0)
| (graph > -1)
(graph >= 0)
(graph <= 0)

3.10 Which values of %, y, a, or b will cause the if statement to be

short-circuited?

if ((x > y) && (a || b))

statement;

a.x =1, y =1

b.x =5, y =1

c.x =2, y=1, a=
d.a = false, b =
e.a = false, b =

true, b = false
true

false

multiple choice

183

184

CHAPTER 3

program statements

true/false

3.1 An if statement may be used to make a decision in a program.
3.2 The expression x > 0 is the same as the expression 0 <= x.

3.3 The operators +=, *=, —=, and /= may only be used with integers.
3.4 The expression a || bisthe same asa && !b.

3.5 1If the expression a && !b evaluates to true, then the expression
a || b will evaluate to true.

3.6 The expression a || b will be short-circuited if a is false.

3.7 Any loop written using a for statement can be written using a
while statement.

3.8 An algorithm is a step-by-step process for solving a problem.

3.9 Once an initial design is created, it should never be revised.

short answer

3.1 What happens in the MinOfThree program if two or more of
the values are equal? If exactly two of the values are equal, does
it matter whether the equal values are lower or higher than the

third?

3.2 What is wrong with the following code fragment? Rewrite it so
that it produces correct output.

if (total == MAX)
if (total < sum)
System.out.println ("total == MAX and is < sum.");
else
System.out.println ("total is not equal to MAX");

3.3 What is wrong with the following code fragment? Will this code
compile if it is part of a valid program? Explain.

if (length = MIN LENGTH)
System.out.println ("The length is minimal.");

3.4

3.5

3.6

3.7

short answer

What output is produced by the following code fragment?

int num = 87, max = 25;

if (num >= max*2)
System.out.println ("apple");
System.out.println ("orange");

System.out.println ("pear");

What output is produced by the following code fragment?

int limit = 100, numl = 15, num2 = 40;
if (limit <= limit)

{
if (numl == num2)
System.out.println ("lemon");
System.out.println ("lime");
}

System.out.println ("grape");

Put the following list of strings in lexicographic order as if deter-
mined by the compareTo method of the String class. Consult
the Unicode chart in Appendix B.

"fred"
"Ethel"
"2-2-2-2"
"I
"Lucy"
"ricky"
"book™"

Mhkkkkkk!

"12345"
"HEPHALUMP"
"bookkeeper"
II6789II

" ;+<?u

WAAAAAAAAAAY

"hephalump"

What output is produced by the following code fragment?

int num = 1, max = 20;
while (num < max)

{
if (num%2 == 0)
System.out.println (num);
num++;

185

186

CHAPTER 3

program statements

3.8 What output is produced by the following code fragment?

for (int num = 0; num <= 200; num += 2)
System.out.println (num);

3.9 What output is produced by the following code fragment?

for (int val = 200; val >= 0; val -= 1)
if (val & 4 != 0)
System.out.println (val);

3.10 Transform the following while loop into a for loop (make sure
it produces the same output).

int num = 1;
while (num < 20)
{

num++;

System.out.println (num);

}

3.11 What is wrong with the following code fragment? What are
three ways it could be changed to remove the flaw?

count = 50;
while (count >= 0)

{
System.out.println (count);
count = count + 1;

}

3.12 Write a while loop that makes sure the user enters a positive
integer value.

3.13 Write a code fragment that reads and prints integer values
entered by a user until a particular sentinel value (stored in
SENTINEL) is entered. Do not print the sentinel value.

3.14 Write a for loop to print the odd numbers from 1 to 99
(inclusive).

3.15 Write a for loop to print the multiples of 3 from 300 down
to 3.

3.16 Write a foreach loop that prints all possible values of an enu-
merated type called Month.

3.17 Write a code fragment that reads 10 integer values from the user
and prints the highest value entered.

programming projects

3.18 Write a code fragment that determines and prints the number of

times the character 'a' appears in a String object called name.

3.19 Write a code fragment that prints the characters stored in a

String object called str backward.

3.20 Write a code fragment that prints every other character in a

String object called word starting with the first character.

programming projects

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Create a new version of the Average program (Listing 3.6) that
prevents a runtime error when the user immediately enters the
sentinel value (without entering any valid values).

Design and implement an application that reads an integer value
representing a year input by the user. The purpose of the pro-
gram is to determine if the year is a leap year (and therefore has
29 days in February) in the Gregorian calendar. A year is a leap
year if it is divisible by 4, unless it is also divisible by 100 but
not 400. For example, the year 2003 is not a leap year, but 2004
is. The year 1900 is not a leap year because it is divisible by
100, but the year 2000 is a leap year because even though it is
divisible by 100, it is also divisible by 400. Produce an error
message for any input value less than 1582 (the year the
Gregorian calendar was adopted).

Change the solution to the Programming Project 3.2 so that the
user can enter more than one year. Let the user end the program
by entering a sentinel value. Validate each input value to make
sure it is greater than or equal to 1582.

Design and implement an application that reads an integer value
and prints the sum of all even integers between 2 and the input
value, inclusive. Print an error message if the input value is less
than 2. Prompt the user accordingly.

Design and implement an application that reads a string from
the user and prints it one character per line.

Design and implement an application that determines and prints
the number of odd, even, and zero digits in an integer value read
from the keyboard.

Design and implement an application that produces a multiplica-
tion table, showing the results of multiplying the integers 1
through 12 by themselves.

187

188

CHAPTER 3

program statements

3.8

3.9

Create a new version of the Counter program (Listing 3.5) such
that the println statement comes after the counter increment
in the body of the loop. Make sure the program still produces
the same output.

Design and implement an application that prints the first few
verses of the traveling song “One Hundred Bottles of Beer.” Use
a loop so that each iteration prints one verse. Read the number
of verses to print from the user. Validate the input. The follow-
ing are the first two verses of the song:

100 bottles of beer on the wall

100 bottles of beer

If one of those bottles should happen to fall
99 bottles of beer on the wall

99 bottles of beer on the wall

99 bottles of beer

If one of those bottles should happen to fall
98 bottles of beer on the wall

3.10 Design and implement an application that plays the Hi-Lo guess-

3.11

ing game with numbers (Listing 3.3). The program should pick a
random number between 1 and 100 (inclusive), then keep asking
the user to guess the number. On each guess, report to the user
that he or she is correct or that the guess is high or low. Keep
accepting guesses until the user guesses correctly or quits. Use a
sentinel value to determine whether the user wants to quit.
Count the number of guesses and report that value when the
user guesses correctly. At the end of each game (by quitting or a
correct guess), ask whether the user wants to play again. Keep
playing games until the user chooses to stop.

Create a new version of the PalindromeTester program
(Listing 3.9) so that the spaces, punctuation, and changes in
uppercase and lowercase are not considered when determining
whether a string is a palindrome. Hint: You can handle this in
several ways. Think carefully about your design.

3.12 Create new versions of the Stars program (Listing 3.13) to

print the following patterns. Create a separate program to pro-
duce each pattern. Hint: Parts b, ¢, and d require several loops,
some of which print a specific number of spaces.

programming projects

Q. *kkkkxkkkx D, * Q. kkkkxxkkkxkx (. *
ko ok ok ok ok ok ok ok *% Kk kkkkkk * %k
*ok ok ok ok ok ok ok * %k Kok okok ok ok ok ok *kkokk
Xk ok ok k kK * kK Kkk ok kKK ko k kK k
* % k% kK * %k Kk Kk kKK Kk kkkkk kK
* %k Kk * Kk Kk K * %k Kk Kok kok Kk ok Kk
* % kK *ok ok ok ok Kk * Kk k dk ok ok ok Kk
* %k *okok ok ok ok ok ok * %k *okkok ok
*% Kkkkkhkkk *% * %k
* dk ok kK kK kK K * *

3.13 Design and implement an application that reads a string from
the user, then determines and prints how many of each lowercase
vowel (a, e, i, 0, and u) appear in the entire string. Have a sepa-
rate counter for each vowel. Also count and print the number of
consonants, spaces, and punctuation marks.

3.14 Design and implement an application that plays the rock-paper-
scissors game against the computer. When played between two
people, each person picks one of three options (usually shown
by a hand gesture) at the same time, and a winner is determined.
In the game, rock beats scissors, scissors beats paper, and paper
beats rock. The program should randomly choose one of the
three options (without revealing it), then ask for the user’s selec-
tion. At that point, the program reveals both choices and prints
a statement indicating that the user won, that the computer won,
or that it was a tie. Keep playing until the user chooses to stop,
then print the number of user wins, losses, and ties.

3.15 Design and implement an application that simulates a simple slot
machine in which three numbers between 0 and 9 are randomly
selected and printed side by side. Print a statement saying all
three of the numbers are the same, or any two of the numbers
are the same, when this happens. Keep playing until the user
chooses to stop.

3.16 Design and implement an applet that draws the side view of stair
steps from the lower left to the upper right.

3.17 Design and implement an applet that draws 100 circles of ran-
dom color and random diameter in random locations. Make
sure that in each case the whole circle appears in the visible area
of the applet.

189

190 CHAPTER 3 program statements

AP*-style multiple choice

3.1 Consider the following output.

10 987 654321

Which of the following loops will produce this output?

(A) for (int i = 0; i < 10; i--)
System.out.print(i + " ");

(B) for (int i = 10; i >= 0; i--)
System.out.print(i + " ");

(C) for (int i = 0; i <= 10; i++)
System.out.print((10 — i) + " ");

(D) for (int i = 0; i < 10; i++)
System.out.print((10 — i) + " ");

(E) for (int i = 10; i > 0; i--)
System.out.print((10 — i) + " ");

3.2 A program has been written to process the scores of soccer
games. Consider the following code segment, which is intended
to assign an appropriate string to outcome based on the number
of points scored by each of two teams. (The team with the
greater number of points gains the victory.)

if (teamlPoints == team2Points)
outcome = "Tie game";

if (teamlPoints > team2Points)
outcome = "Victory for Team 1";

else
outcome = "Victory for Team 2";

The code does not work properly. For which of the following
cases will the code assign the wrong string to outcome?

The case where
I. both teams score the same number of points
II. Team 1 scores more points than Team 2

II. Team 2 scores more points than Team 1

3.3

3.4

3.5

AP*-style multiple choice

(A) T only

(B) II only
(C) I only
(D) I and III only
(E) II and III only

Consider the following code segment.

for (int i = 1; i < 5; i++)
for (int k = i; k > 2; k--)
System.out.print(k + " ");
What is printed as a result of executing the code segment?

A)3 4 3

B) 3 4 4
)1 2 3 4 3
D)2 324 32

E) Many digits are printed due to an infinite loop.
Consider the following code segment.
for (int 1 = 1; i < 25; i = i + 5)
if (i %5 == 0)
System.out.print(i + " ");
What is printed as a result of executing the code segment?
)5 10 15 20
B)5 10 15 20 25
C)5 15
D)6
(E) Nothing is printed.

(A
(
(
(11 16 21

Consider the following while loop.

int k = 8;
while (k > 0)
{

k =%k - 2;

System.out.println(k);

191

192

CHAPTER 3

program statements

3.6

Which of the following for loops produces the same output as
the while loop?

(A) for (int k=8; k >= 0; k = k — 2)
{ System.out.println(k); 3}

(B) for (int k=8; k > 0; k = k — 2)
{ System.out.println(k); 3}

(C) for (int k=8; k > 2; k = k — 2)
{ System.out.println(k); 3}

(D) for (int k=6; k >= 0; k = k — 2)
{ System.out.println(k); }

(E) for (int k=6; k > 0; k = k — 2)
{ System.out.println(k); }

Consider the following variable declarations.

boolean a = true, b = false;
int k = 7;

In which expression will short-circuiting occur?

Cla || (k < 7)
D)b || a
E) (k == 7) s& a

answers to self-review questions

3.1

3.2

3.3

The four basic activities in software development are require-
ments analysis (deciding what the program should do), design
(deciding how to do it), implementation (writing the code), and
testing (validating the implementation).

An algorithm is a step-by-step process that describes the solution
to a problem. Every program can be described in algorithmic
terms. An algorithm is often written in pseudocode, a loose com-
bination of English and code-like terms used to capture the basic
processing steps.

The flow of control through a program determines the program
statements that will be executed when the program is run.

3.4

3.5

3.6

3.7

3.8

3.9

answers to self-review questions

Each conditional and loop is based on a boolean condition that
evaluates to either true or false.

The equality operators are equal (==) and not equal (!=). The
relational operators are less than (<), less than or equal to (<=),
greater than (>), and greater than or equal to (>=).

A nested if is an if statement inside an if or else clause. A
nested if lets the programmer make a series of decisions. A
nested loop is a loop within a loop.

A block statement groups several statements together. We use
them to define the body of an if statement or loop when we
want to do several things based on the boolean condition.

A truth table shows all possible results of a boolean expression,
given all possible combinations of variables and conditions.

We compare strings for equality using the equals method of the
String class, which returns a boolean result. The compareTo
method of the string class can also be used to compare strings.
It returns a positive, 0, or negative integer result depending on
the relationship between the two strings.

3.10 Because they are stored internally as binary numbers, comparing

floating point values for exact equality will be true only if they
are the same bit-by-bit. It’s better to use a reasonable tolerance
value and consider the difference between the two values.

3.11 An assignment operator combines an operation with assignment.

For example, the += operator performs an addition, then stores
the value back into the variable on the right-hand side.

3.12 An infinite loop is a repetition statement that never ends. The

body of the loop never causes the condition to become false.

3.13 A for loop is usually used when we know, or can calculate, how

many times we want to iterate through the loop body. We use a
while loop when we don’t know how many times the loop
should execute.

193

