
statements. We are now ready

to design more complex soft-

ware by creating our own

classes to define objects that

perform whatever services we

define. This chapter explores

the details of class definitions,

including the structure and

semantics of methods and the

scope and encapsulation of

data.

◗ Define classes that act like blue-
prints for new objects, made of
variables and methods.

◗ Explain encapsulation and Java
modifiers.

◗ Explore the details of method
declarations.

◗ Review method invocation and
parameter passing.

◗ Explain and use method
overloading.

◗ Learn to divide complicated
methods into simpler, supporting
methods.

◗ Describe relationships between
objects.

◗ Create graphics-based objects.

chapter
objectives

In Chapters 2 and 3 we used objects and
classes for the services they provide. We also

explored several basic programming

4
writing

classes

ch04.qxp 3/14/06 9:00 AM Page 195

196 CHAPTER 4 writing classes

4.0 objects revisited
In Chapters 2 and 3 we created objects from classes in the Java standard
class library. We didn’t need to know the details of how the classes did their
jobs; we simply trusted them to do so. That is one of the advantages of
abstraction. Now we are ready to write our own classes.

First, let’s review the concept of an object and explore it in more detail.
Think about objects in the world around you. How would you describe
them? Let’s use a ball as an example. A ball has a diameter, color, and elas-
ticity. We say the properties that describe an object, called attributes, define
the object’s state of being. We also describe a ball by what it does, such as
the fact that it can be thrown, bounced, or rolled. These are the object’s
behavior.

All objects have a state and a set of behaviors. So do software objects. The
values of an object’s variables describe the object’s state, and the methods
define the object’s behaviors.

Consider a computer game that uses a ball. The ball could be rep-
resented as an object. It could have variables to store its size and loca-
tion, and methods that draw it on the screen and calculate how it
moves when thrown, bounced, or rolled. The variables and methods
defined in the ball object are the state and behavior of the ball in the
computerized ball game.

Each object has its own state. Each ball object has a particular location,
for instance, which is different from the location of all other balls. Behaviors,
though, tend to apply to all objects of a particular type. For instance, any
ball can be thrown, bounced, or rolled. The act of rolling a ball is generally
the same for all balls.

The state of an object and that object’s behaviors work together. How
high a ball bounces depends on its elasticity. A basketball will bounce higher
than, say, a golf ball. The action is the same, but the result depends on that
particular object’s state. An object’s behavior often changes its state. For
example, when a ball is rolled, its location changes.

Any object can be described in terms of its state and behavior. Let’s take
another example. In software that is used to manage a school, a student
could be represented as an object. The collection of all such objects repre-
sents the entire student body at the school. Each student has a state. That is,
each student object would contain the variables that store information about
a particular student, such as name, address, courses taken, grades, and grade
point average. A student object also has behaviors. For example, the class of
the student object may contain a method to add a new course.

Each object has a state and a
set of behaviors. The values of
an object’s variables define its
state and the methods define
its behaviors.

ke
y

co
nc

ep
t

ch04.qxp 3/14/06 9:00 AM Page 196

4.0 objects revisited 197

Although software objects often represent physical things, like balls and
students, they don’t have to. For example, an error message can be an object,
with its state being the text of the message and behaviors, including printing
the error message. A common mistake made by new programmers is to limit
the possibilities to physical things.

classes
An object is defined by a class. A class is the model, pattern, or blueprint
from which an object is created. Consider the blueprint created by an archi-
tect when designing a house. The blueprint defines the important character-
istics of the house—its walls, windows, doors, electrical outlets, and so on.
Once the blueprint is created, several houses can be built using it, as shown
in Figure 4.1.

The houses built from the blueprint are different. They are in different
locations, they have different addresses, contain different furniture, and dif-
ferent people live in them. Yet in many ways they are the “same” house. The
layout of the rooms, number of windows and doors, and so on are the same
in each. To create a different house, we would need a different blueprint.

A class is a blueprint of an object. However, a class is not an object any
more than a blueprint is a house. In general, no space to store data values is
reserved in a class. To create space to store data values, we must instantiate

figure 4.1 A house blueprint and three houses created from it

Figure 4.1

ch04.qxp 3/14/06 9:00 AM Page 197

198 CHAPTER 4 writing classes

one or more objects from the class. (We discuss the exception to this
rule in the next chapter.) Each object is an instance of a class. Each
object has space for its own data, which is why each object can have
its own state.

4.1 anatomy of a class
A class contains the declarations of the data that will be stored in each
instantiated object and the declarations of the methods that can be invoked
using an object. These are called the members of the class, as shown in
Figure 4.2.

Consider the CountFlips program shown in Listing 4.1. It uses an object
that represents a coin that can be flipped to get a random “heads” or “tails.”
The CountFlips program simulates the flipping of a coin 1,000 times to see
how often it comes up heads or tails. The myCoin object is instantiated from
a class called Coin.

Listing 4.2 shows the Coin class used by the CountFlips program. A
class, and therefore any object created from it, is made up of data values
(variables and constants) and methods. In the Coin class, we have two inte-
ger constants, HEADS and TAILS, and one integer variable, face. The rest of
the Coin class is made up of the Coin constructor and three regular meth-
ods: flip, isHeads, and toString.

A class is a blueprint of an
object; it has no memory space
for data. Each object has its
own data space, thus its own
state.

ke
y

co
nc

ep
t

figure 4.2 The members of a class: data and method declarations
Fig 04-02

int x, y, diameter;
character type;
double elasticity;

Data
declarations

Method
declarations

ch04.qxp 3/14/06 9:00 AM Page 198

4.1 anatomy of a class 199

listing
4.1

//**
// CountFlips.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of a programmer-defined class.
//**

public class CountFlips
{

//---
// Flips a coin multiple times and counts the number of heads
// and tails that result.
//---
public static void main (String[] args)
{

final int NUM_FLIPS = 1000;
int heads = 0, tails = 0;

Coin myCoin = new Coin(); // instantiate the Coin object

for (int count=1; count <= NUM_FLIPS; count++)
{

myCoin.flip();

if (myCoin.isHeads())
heads++;

else
tails++;

}

System.out.println ("The number flips: " + NUM_FLIPS);
System.out.println ("The number of heads: " + heads);
System.out.println ("The number of tails: " + tails);

}
}

The number flips: 1000
The number of heads: 486
The number of tails: 514

output

ch04.qxp 3/14/06 9:00 AM Page 199

200 CHAPTER 4 writing classes

listing
4.2

//**
// Coin.java Author: Lewis/Loftus/Cocking
//
// Represents a coin with two sides that can be flipped.
//**

import java.util.Random;

public class Coin
{

private final int HEADS = 0;
private final int TAILS = 1;

private int face;

//---
// Sets up the coin by flipping it initially.
//---
public Coin ()
{

flip();
}

//---
// Flips the coin by randomly choosing a face value.
//---
public void flip ()
{

face = (int) (Math.random() * 2);
}

//---
// Returns true if the current face of the coin is heads.
//---
public boolean isHeads ()
{

return (face == HEADS);
}

//---
// Returns the current face of the coin as a string.
//---
public String toString()
{

String faceName;

ch04.qxp 3/14/06 9:00 AM Page 200

4.1 anatomy of a class 201

Remember from Chapter 2 that constructors are special methods that
have the same name as the class. The Coin constructor gets called when the
new operator is used to create a new instance of the Coin class. The rest of
the methods in the Coin class define the various services provided by Coin
objects.

Note that a header block of documentation is used to explain the purpose
of each method in the class. This practice is not only important for anyone
trying to understand the software, it also separates the code so that it’s easy
to see where one method ends and the next begins. The definitions of these
methods have many parts, and we’ll look at them in later sections of this
chapter.

Figure 4.3 lists the services defined in the Coin class. The Coin class looks
like other classes that we’ve used in previous examples. The only important
difference is that the Coin class is not part of the Java standard class library.
We wrote it ourselves.

listing
4.2 continued

if (face == HEADS)
faceName = "Heads";

else
faceName = "Tails";

return faceName;
}

}

figure 4.3 Some methods of the Coin class

Coin ()
Constructor: sets up a new Coin object with a random initial face.

void flip ()
Flips the coin.

boolean isHeads ()
Returns true if the current face of the coin shows heads.

String toString ()
Returns a string describing the current face of the coin.

Fig 04-03

ch04.qxp 3/14/06 9:00 AM Page 201

202 CHAPTER 4 writing classes

For most of the examples in this book, we store each class in its own file.
Java lets you put several classes in one file. If a file contains several classes,
only one of those classes can be declared using the reserved word public.
Also, the name of the public class must match the name of the file. For
instance, class Coin is stored in a file called Coin.java.

instance data
In the Coin class, the constants HEADS and TAILS, and the variable
face are declared inside the class, but not inside any method. The
location at which a variable is declared defines its scope, which is the
area in a program where that variable can be referenced. Because they
are declared at the class level (not within a method), these variables
and constants can be referenced in any method of the class.

Attributes such as the variable face are also called instance data because
memory space is created for each instance of the class that is created. Each
Coin object, for example, has its own face variable with its own data space.
Therefore at any point in time, two Coin objects can have their own states:
one can be showing heads and the other can be showing tails, for example.

We can depict this situation as follows:

The coin1 and coin2 reference variables point to (that is, contain the
address of) their respective Coin objects. Each object contains a face vari-
able with its own memory space. Thus each object can store different values
for its instance data.

The program FlipRace shown in Listing 4.3 declares two Coin objects.
They are used in a race to see which coin will flip first to three heads in a row.

The output of the FlipRace program shows the results of each coin flip
on each turn. The object reference variables, coin1 and coin2, are used in
the println statement. When an object is used as an operand of the string
concatenation operator (+), that object’s toString method is automatically
called to get a string representation of the object. The toString method is
also called if an object is sent to a print or println method by itself. If no
toString method is defined for a class, a default version returns a string

coin1 face HEADS

coin2 face TAILS

The scope of a variable, which
determines where it can be
referenced, depends on where
it is declared.

ke
y

co
nc

ep
t

ch04.qxp 3/14/06 9:00 AM Page 202

4.1 anatomy of a class 203

listing
4.3

//**
// FlipRace.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the existence of separate data space in multiple
// instantiations of a programmer-defined class.
//**

public class FlipRace
{

//---
// Flips two coins until one of them comes up heads three times
// in a row.
//---
public static void main (String[] args)
{

final int GOAL = 3;
int count1 = 0, count2 = 0;

// Create two separate coin objects
Coin coin1 = new Coin();
Coin coin2 = new Coin();

while (count1 < GOAL && count2 < GOAL)
{

coin1.flip();
coin2.flip();

// Print the flip results (uses Coin's toString method)
System.out.print ("Coin 1: " + coin1);
System.out.println (" Coin 2: " + coin2);

// Increment or reset the counters
if (coin1.isHeads())

count1++;
else

count1 = 0;
if (coin2.isHeads())

count2++;
else

count2 = 0;
}

// Determine the winner
if (count1 < GOAL)

System.out.println ("Coin 2 Wins!");
else

if (count2 < GOAL)
System.out.println ("Coin 1 Wins!");

ch04.qxp 3/14/06 9:00 AM Page 203

204 CHAPTER 4 writing classes

that contains the name of the class, together with other information. It is
usually a good idea to define a specific toString method for a class.

We have now used the Coin class to create objects in two separate pro-
grams (CountFlips and FlipRace). This is no different from using the
String class in whatever program we need it. When designing a class, it is
always good to try to give the class behaviors that can be used in other pro-
grams, not just the program you are creating at the moment.

Java automatically initializes any variables declared at the class level. For
example, all variables of numeric types such as int and double are initial-
ized to zero. However, it is good practice to initialize variables explicitly
(usually in a constructor) so that anyone reading the code will clearly under-
stand what you are doing.

encapsulation and visibility modifiers
We can think about an object in one of two ways, depending on what we are
trying to do. First, when we are designing and implementing an object, we
need to think about how an object works. That is, we have to design the
class—we have to define the variables that will be held in the object and
write the methods that make the object useful.

However, when we are designing a solution to a larger problem, we have
to think about how the objects in the program work with each other. At that

listing
4.3 continued

else
System.out.println ("It's a TIE!");

}
}

Coin 1: Heads Coin 2: Tails
Coin 1: Heads Coin 2: Tails
Coin 1: Tails Coin 2: Heads
Coin 1: Tails Coin 2: Heads
Coin 1: Heads Coin 2: Tails
Coin 1: Tails Coin 2: Heads
Coin 1: Heads Coin 2: Tails
Coin 1: Heads Coin 2: Heads
Coin 1: Heads Coin 2: Tails
Coin 1 Wins!

output

ch04.qxp 3/14/06 9:00 AM Page 204

4.1 anatomy of a class 205

level, we have to think only about the services that an object provides, not
the details of how those services are provided. As we discussed in Chapter 2,
an object provides a level of abstraction that lets us focus on the big picture
when we need to.

This abstraction works only if we are careful to respect its boundaries. An
object should be self-governing, which means that the variables contained in
an object should be changed only within the object. Only the methods within
an object should have access to the variables in that object. For example, the
methods of the Coin class should be the only methods that can change the
value of the face variable. We should make it difficult or impossible for
code outside of a class to “reach in” and change the value of a variable that
is declared inside the class.

In Chapter 2 we mentioned that the object-oriented term for this is encap-
sulation. An object should be encapsulated from the rest of the sys-
tem. It should work with other parts of a program only through the
object’s own methods. These methods define the interface between
that object and the program that uses it.

Figure 4.4 shows how encapsulation works. The code that uses an
object, called the client of an object, should not be able to get to vari-
ables directly. The client should interact with the object’s methods,
and those methods then interact with the data encapsulated in the object. For
example, the main method in the CountFlips program calls the flip and
isHeads methods of the myCoin object. The main method should not (and
in fact cannot) get to the face variable directly.

In Java, we create object encapsulation using modifiers. A modifier is a
Java reserved word that names special characteristics of a programming lan-
guage construct. We’ve already seen one modifier, final, which we use to
declare a constant. Java has several modifiers that can be used in different

Objects should be
encapsulated. The rest of a
program should work with an
object only through a well-
defined interface.

key
concept

figure 4.4 A client interacting with the methods of an object

object

Client

Data

Methods

Fig 04-06

ch04.qxp 3/14/06 9:00 AM Page 205

206 CHAPTER 4 writing classes

ways. Some modifiers can be used together. We discuss various Java modi-
fiers at appropriate points throughout this book.

Some Java modifiers are called visibility modifiers. They control whether
client code can “see” what’s “inside” an object. The reserved words public
and private are visibility modifiers that can be applied to the variables and
methods of a class. If a member of a class has public visibility, it can be “seen”
(read and perhaps changed) from outside the object. If a member of a class
has private visibility, it can be used anywhere inside but not outside the class
definition.

Public variables let code outside the class reach in and read or change the
value of the data. Therefore instance data should be defined with private vis-
ibility. Data that is declared as private can be read or changed only by the
methods of the class, which makes the objects created from that class self-
governing. Whether a method has public or private visibility depends on the
purpose of that method. Methods that provide services to the client of the
class must have public visibility so that they can be invoked by the client.
These methods are sometimes called service methods. A private method
cannot be invoked from outside the class. The only purpose of a private
method is to help the other methods of the class do their job. Therefore they
are sometimes called support methods. We discuss an example that makes
use of several support methods later in this chapter.

The table in Figure 4.5 summarizes the effects of public and private visi-
bility on both variables and methods.

Note that a client can still read or change private data by invok-
ing service methods that change the data. For example, although the
main method of the FlipRace class cannot directly get to the face
variable, it can invoke the flip service method, which sets the value

Instance variables should be
declared with private visibility.ke

y
co

nc
ep

t

figure 4.5 The effects of public and private visibility

Does not
protect data

Provides services
to clients

Supports other
methods in the

class

Protects
data

Variables

Fig 04-05

Methods

public private

ch04.qxp 3/14/06 9:00 AM Page 206

4.2 anatomy of a method 207

of face. A class must provide service methods for valid client operations.
The code of those methods must be carefully designed to allow only appro-
priate access and valid changes.

Giving constants public visibility is generally considered acceptable because,
although their values can be accessed directly, they cannot be changed. That is
because constants are declared using the final modifier. Keep in mind that
encapsulation means that data values should not be able to be changed directly
by another part of the code. Because constants, by definition, cannot be
changed, they don’t need to be protected. If we had thought it important to
provide external access to the values of the constants HEADS and TAILS in the
Coin class, we could have declared them with public visibility.

4.2 anatomy of a method
We’ve seen that a class is made up of data declarations and method declara-
tions. Let’s look at method declarations in more detail.

As we stated in Chapter 1, a method is a group of programming language
statements that is given a name. Every method in a Java program is part of
a particular class. A method declaration defines the code that is executed
when the method is invoked.

When a method is called, the statements of that method are executed.
When that method is done, control returns to the location where the call was
made and execution continues. A method that is called might be part of the
same object (defined in the same class) as the method that called it, or it
might be part of a different object. If the called method is part of the same
object, only the method name is needed to call it. If it is part of a different
object, it is invoked through that object’s name, as we’ve seen many times.
Figure 4.6 shows what this process looks like.

figure 4.6 The flow of control following method invocations

Figure 4.8

obj.doThis();
helpMe();

main

doThis helpMe

ch04.qxp 3/14/06 9:00 AM Page 207

208 CHAPTER 4 writing classes

We’ve defined the main method of a program many times in our exam-
ples. The main method follows the same syntax as all methods. The header
of a method includes the type of the return value, the method name, and a
list of parameters that the method accepts. The statements that make up the
body of the method are defined in a block inside braces.

Let’s look at another example. The Banking class shown in Listing 4.4
contains a main method that creates and then calls methods on a few
Account objects. The Banking program doesn’t really do anything useful
except show how to interact with Account objects. Such programs are often
called driver programs because all they do is drive other, more interesting
parts of a program. They are often used for testing.

The Account class represents a basic bank account and is shown in
Listing 4.5. Its data values include the account number, the balance, and the
name of the account’s owner. The interest rate is stored as a constant.

The status of the three Account objects just after they were created in the
Banking program could be depicted as follows:

acct1

acctNumber

balance

name

72354

102.56

"Ted Murphy"

acct2

acctNumber

balance

name

69713

40.00

"Anita Gomez"

acct3

acctNumber

balance

name

93757

759.32

"Sanchit Reddy"

ch04.qxp 3/14/06 9:00 AM Page 208

4.2 anatomy of a method 209

listing
4.4

//**
// Banking.java Author: Lewis/Loftus/Cocking
//
// Driver to exercise the use of multiple Account objects.
//**

public class Banking
{

//---
// Creates some bank accounts and requests various services.
//---
public static void main (String[] args)
{

Account acct1 = new Account ("Ted Murphy", 72354, 102.56);
Account acct2 = new Account ("Anita Gomez", 69713, 40.00);
Account acct3 = new Account ("Sanchit Reddy", 93757, 759.32);

acct1.deposit (25.85);

double gomezBalance = acct2.deposit (500.00);
System.out.println ("Gomez balance after deposit: " +

gomezBalance);

System.out.println ("Gomez balance after withdrawal: " +
acct2.withdraw (430.75, 1.50));

acct3.withdraw (800.00, 0.0); // exceeds balance

acct1.addInterest();
acct2.addInterest();
acct3.addInterest();

System.out.println ();
System.out.println (acct1);
System.out.println (acct2);
System.out.println (acct3);

}
}

ch04.qxp 3/14/06 9:00 AM Page 209

210 CHAPTER 4 writing classes

listing
4.4 continued

Gomez balance after deposit: 540.0
Gomez balance after withdrawal: 107.75

Error: Insufficient funds.
Account: 93757
Requested: $800.00
Available: $759.32

72354 Ted Murphy $132.90
69713 Anita Gomez $111.52
93757 Sanchit Reddy $785.90

output

Method Declaration

Parameters

A method is defined by optional modifiers, followed by a return Type, followed by
an Identifier that determines the method name, followed by a list of Parameters, fol-
lowed by the Method Body. The return Type indicates the type of value that will be
returned by the method, which may be void. The Method Body is a block of statements
that executes when the method is called.

Example:

public void instructions (int count)
{

System.out.println ("Follow all instructions.");
System.out.println ("Use no more than " + count +

" turns.");
}

Modifier
Parameters

void
Type Identifier Method Body

()
IdentifierType

,

ch04.qxp 3/14/06 9:00 AM Page 210

4.2 anatomy of a method 211

//**
// Account.java Author: Lewis/Loftus/Cocking
//
// Represents a bank account with basic services such as deposit
// and withdraw.
//**

import java.text.NumberFormat;

public class Account
{

private NumberFormat fmt = NumberFormat.getCurrencyInstance();

private final double RATE = 0.035; // interest rate of 3.5%

private int acctNumber;
private double balance;
private String name;

//---
// Sets up the account by defining its owner, account number,
// and initial balance.
//---
public Account (String owner, int account, double initial)
{

name = owner;
acctNumber = account;
balance = initial;

}

//---
// Validates the transaction, then deposits the specified amount
// into the account. Returns the new balance.
//---
public double deposit (double amount)
{

if (amount < 0) // deposit value is negative
{

System.out.println ();
System.out.println ("Error: Deposit amount is invalid.");
System.out.println (acctNumber + " " + fmt.format(amount));

}
else

balance = balance + amount;

return balance;
}

listing
4.5

ch04.qxp 3/14/06 9:00 AM Page 211

212 CHAPTER 4 writing classes

listing
4.5 continued

//---
// Validates the transaction, then withdraws the specified amount
// from the account. Returns the new balance.
//---
public double withdraw (double amount, double fee)
{

amount += fee;

if (amount < 0) // withdraw value is negative
{

System.out.println ();
System.out.println ("Error: Withdraw amount is invalid.");
System.out.println ("Account: " + acctNumber);
System.out.println ("Requested: " + fmt.format(amount));

}
else

if (amount > balance) // withdraw value exceeds balance
{

System.out.println ();
System.out.println ("Error: Insufficient funds.");
System.out.println ("Account: " + acctNumber);
System.out.println ("Requested: " + fmt.format(amount));
System.out.println ("Available: " + fmt.format(balance));

}
else

balance = balance - amount;

return balance;
}

//---
// Adds interest to the account and returns the new balance.
//---
public double addInterest ()
{

balance += (balance * RATE);
return balance;

}

//---
// Returns the current balance of the account.
//---
public double getBalance ()
{

return balance;
}

ch04.qxp 3/14/06 9:00 AM Page 212

4.2 anatomy of a method 213

The methods of the Account class do things like make deposits and with-
drawals. The program also makes sure that the data are valid, such as pre-
venting the withdrawal of a negative amount. We explore the methods of the
Account class in detail in the following sections.

the return statement
The return type in the method header can be a primitive type, class name, or
the reserved word void. When a method does not return any value, void is
used as the return type, as is always done with the main method.

A method that returns a value must have a return statement. After
a return statement is executed, control is immediately returned to
the statement in the calling method, and processing continues there.
A return statement is the reserved word return followed by an
expression that dictates the value to be returned. The expression must match
the return type in the method header.

For example, the return statement in a method that returns a double
could look like this:

return sum/2.0;

If the variable sum had the value 14 when the return statement was
reached, then the value returned would be 7.0.

A method that does not return a value does not usually need a return
statement because it automatically returns to the calling method when it is

listing
4.5 continued

//---
// Returns the account number.
//---
public int getAccountNumber ()
{

return acctNumber;
}

//---
// Returns a one-line description of the account as a string.
//---
public String toString ()
{

return (acctNumber + "\t" + name + "\t" + fmt.format(balance));
}

}

A return value must match the
return type in the method
header.

key
concept

ch04.qxp 3/14/06 9:00 AM Page 213

214 CHAPTER 4 writing classes

done. A method with a void return type may, however, have a return state-
ment without an expression.

It is usually not good practice to use more than one return statement in
a method. In general, the return statement should be the last line of the
method body.

Many of the methods of the Account class in Listing 4.5 return a double
that represents the balance of the account. Constructors do not have a return
type at all (not even void), so they cannot have a return statement. We dis-
cuss constructors in more detail in a later section.

Note that a return value can be ignored. In the main method of the
Banking class, sometimes the value that is returned by a method is used in
some way, and sometimes the value returned is simply ignored.

parameters
Remember from Chapter 2 that a parameter is a value that is passed into a
method when it is invoked. The parameter list in the header of a method lists
the types of the values that are passed and their names.

The parameters in the header of the method declaration are called formal
parameters. The values passed into a method are called actual parameters.

The parameter list is always in parentheses after the method name. If
there are no parameters, the parentheses are empty.

The formal parameters are identifiers that act as variables inside the
method. Their initial values come from the actual parameters in
the invocation. When a method is called, the value in each actual

Return Statement

A return statement is the return reserved word followed by an
optional Expression. After the statement executes, control is immedi-
ately returned to the calling method, returning the value defined by
Expression.

Examples:

return;

return (distance * 4);

return
Expression

;

When a method is called, the
actual parameters are copied
into the formal parameters. The
types of the corresponding
parameters must match.

ke
y

co
nc

ep
t

ch04.qxp 3/14/06 9:00 AM Page 214

4.2 anatomy of a method 215

parameter is copied and stored in the matching formal parameter. Actual
parameters can be literals, variables, or full expressions. If an expression is
used as an actual parameter, it is fully evaluated before the method call and
the result is passed as the parameter.

The parameter lists in the invocation and the method declaration must
match up. That is, the value of the first actual parameter is copied into the
first formal parameter, the second actual parameter into the second formal
parameter, and so on, as shown in Figure 4.7. The types of the actual param-
eters must match the types of the formal parameters.

The deposit method of the Account class in Listing 4.5, for example,
takes one formal parameter called amount, of type double, representing the
amount to be deposited into the account. Each time the method is invoked
in the main method of the Banking class, one literal value of type double
is passed as an actual parameter. For example, in the first call to deposit,
the actual parameter is 25.85. When the program is running and the state-
ment acct1.deposit(25.85) is invoked, control transfers to the
deposit method and the parameter amount takes on the value 25.85. In
the case of the withdraw method, two parameters of type double are
expected. The types and number of parameters must match or you will get
an error message.

Constructors can also take parameters, as we discuss in the next section.
We discuss parameter passing in more detail in Chapter 5.

preconditions and postconditions
Preconditions and postconditions allow us to reason about methods,
helping to make sure they are correct. A precondition is a condition
that should be true when a method is called. A postcondition is a
condition that should be true when a method finishes executing,

figure 4.7 Passing parameters from the method invocation to the declaration

Figure 04.10

M
et

ho
d

In
vo

ca
ti
on

M
et

ho
d

D
ec

la
ra

ti
on

ch = obj.calc (25, count, "Hello");

char calc (int numl, int num2, String message)
{

int sum = numl + num2;
 char result = message.charAt (sum);
 return result;
}

A precondition is a condition
that should be true when a
method is called. A
postcondition is a condition
that should be true when a
method finishes executing.

key
concept

ch04.qxp 3/14/06 9:00 AM Page 215

assuming that the precondition was true. If a method’s precondition is vio-
lated, the postcondition does not apply.

For example, the deposit method requires that amount be greater than
or equal to 0, otherwise an error is printed and the deposit is not performed.
If the precondition is true, then when deposit finishes executing, the bal-
ance will be the original balance plus amount. This is the postcondition.

Pre- and postconditions can be stated in comments above the method dec-
laration. For the deposit method, we could include the following comments:

// Precondition: amount >= 0
// Postcontition: balance = balance + amount

Preconditions and postconditions are both a kind of assertion, which is a
logical statement that can be true or false, and represents an assumption
being made about a program. For example, consider the following test of
whether a number is odd or even:

if (num % 2 == 1)
System.out.println ("odd");

else // num % 2 == 0
System.out.println ("even");

The comment after the else, // num % 2 == 0, is an assertion. The pro-
grammer is assuming that if the remainder of num divided by 2 is not 1, then
it must be 0.

Including assertions in comments clarifies the programmer’s assumptions
about the program, but comments don’t affect the execution of a program.
The Java language includes an assertion statement that does affect the exe-
cution of a program, allowing assumptions to be tested while a program is
running:

if (num % 2 == 1)
System.out.println ("odd");

else // num % 2 == 0
{

assert num % 2 == 0;
System.out.println ("even");

}

If the expression after the assert keyword is false, the program will end
with an AssertionError. Assertions help ensure that a program is correct
by uncovering false assumptions the programmer may have. In the code seg-
ment above, the programmer is assuming that num % 2 will always be 0 or
1, but actually, if num is negative, num % 2 could be -1!

Since assertions are normally used only during testing, they are turned off
by default in Java. Consult the documentation for your development envi-

216 CHAPTER 4 writing classes

ch04.qxp 3/16/06 3:27 PM Page 216

4.2 anatomy of a method 217

ronment to find out how to turn assertions on (otherwise any assert state-
ments are ignored).

Note that while preconditions, postconditions, and the concept of asser-
tions are required for the AP* exam, the Java assertion statement is not, and
we do not use it in this book.

constructors
As we stated in Chapter 2, a constructor is like a method that is called when
an object is instantiated. When we define a class, we usually define a con-
structor to help us set up the class. In particular, we often use a constructor
to initialize the variables associated with each object.

A constructor is different from a regular method in two ways. First, the
name of a constructor is the same name as the class. Therefore the name of
the constructor in the Coin class is Coin, and the name of the constructor
of the Account class is Account. Second, a constructor cannot return a
value and does not have a return type specified in the method header.
A constructor cannot be called like other methods. It is called only
when an object is first created.

A common mistake made by programmers is to put a void return
type on a constructor. As far as the compiler is concerned, putting any
return type on a constructor, even void, turns it into a regular method that
happens to have the same name as the class. That means it cannot be invoked
as a constructor. This leads to error messages that are sometimes difficult to
figure out.

A constructor is generally used to initialize the newly instantiated object.
For instance, the constructor of the Coin class calls the flip method to
determine the initial face value of the coin. The constructor of the Account
class sets the values of the instance variables to the values passed in as
parameters to the constructor.

We don’t have to define a constructor for every class. Each class has a
default constructor that takes no parameters and is used if we don’t provide
our own. This default constructor generally has no effect on the newly cre-
ated object.

local data
As we described earlier in this chapter, the scope of a variable (or con-
stant) is the part of a program where a valid reference to that variable
can be made. A variable can be declared inside a method, making it
local data as opposed to instance data. Recall that instance data is declared

A constructor cannot have any
return type, even void.

A variable declared in a method
is local to that method and
cannot be used outside
of it.

key
concept

k ey
concept

ch04.qxp 3/14/06 9:00 AM Page 217

218 CHAPTER 4 writing classes

in a class but not inside any particular method. Local data has scope limited
to only the method where it is declared. The faceName variable declared in
the toString method of the Coin class is local data. Any reference to
faceName in any other method of the Coin class would cause an error mes-
sage. A local variable simply does not exist outside of the method in which
it is declared. Instance data, declared at the class level, has a scope of the
entire class; any method of the class can refer to it.

Because local data and instance data have different levels of scope, it’s pos-
sible to declare a local variable inside a method using the same name as an
instance variable declared at the class level. In the method that name will ref-
erence the local version of the variable. This naming practice could confuse
anyone reading the code, so it should be avoided.

The formal parameter names in a method header serve as local data for
that method. They don’t exist until the method is called, and they stop exist-
ing when the method ends. For example, although amount is the name of the
formal parameter in both the deposit and withdraw method of the
Account class, each is a separate piece of local data that doesn’t exist until
the method is invoked.

accessors and mutators
Recall that instance data is generally declared with private visibility.
Because of this, a class usually provides services to access and modify
data values. An accessor method provides read-only access to a par-
ticular value. Likewise, a mutator method, sometimes called a modi-
fier method, changes a particular value.

Generally, accessor method names have the form getX, where X is the
value to which it provides access. Likewise, mutator method names have the
form setX, where X is the value they are setting. Therefore these types of
methods are sometimes referred to as “getters” and “setters.”

Some methods may provide accessor and/or mutator capabilities as a side
effect of their primary purpose. For example, the flip method of the Coin
class changes the face of the coin, and returns that new value as well. Note
that the code of the flip method is careful to keep the face of the coin in the
valid range (0 or 1). Service methods must be carefully designed to permit
only appropriate access and valid changes.

In the next section we will see an example of accessor and mutator methods.

Most objects contain accessor
and mutator methods to allow
the client to manage data in a
controlled manner.

ke
y

co
nc

ep
t

ch04.qxp 3/14/06 9:00 AM Page 218

4.3 method overloading 219

4.3 method overloading
When a method is invoked, control transfers to the code that defines the
method. After the method finishes, control returns to the location of the call,
and processing continues.

Often the method name is enough to indicate which method is being
called by a specific invocation. But in Java, as in other object-oriented lan-
guages, you can use the same method name with different parameter lists for
several methods. This is called method overloading. It is useful when you
need to perform similar operations on different types of data.

The compiler must still be able to match up each invocation with a spe-
cific method declaration. If the method name for two or more methods is the
same, then additional information is used to tell which version is
being invoked. In Java, a method name can be used for several meth-
ods as long as the number of parameters, the types of those para-
meters, and/or the order of the types of parameters is different. A
method’s name along with the number, type, and order of its param-
eters is called the method’s signature. The compiler uses the complete
method signature to bind a method invocation to its definition.

The compiler must be able to examine a method invocation, including the
parameter list, to determine which method is being called. If you try to create
two method names with the same signature, you will get an error message.

Note that the return type of a method is not part of the method signature.
So two overloaded methods cannot differ only by their return type. This is
because the value returned by a method can be ignored and the compiler
would not be able to tell which version of an overloaded method was being
referenced.

The println method is an example of a method that is overloaded sev-
eral times, each accepting a single type. The following is a list of some of its
signatures:

◗ println (String s)

◗ println (int i)

◗ println (double d)

◗ println (char c)

◗ println (boolean b)

You can tell the versions of an
overloaded method apart by
their signature, which is the
number, type, and order of the
parameters.

key
concept

ch04.qxp 3/14/06 9:00 AM Page 219

220 CHAPTER 4 writing classes

The following two lines of code actually call different methods that have
the same name:

System.out.println ("The total number of students is: ");
System.out.println (count);

The first line calls the println that accepts a string. The second line calls
the version that accepts an integer.

We often use a println statement that prints several types, such as:

System.out.println ("The total number of students is: " +
count);

In this case, the plus sign is the string concatenation operator. First, the value
in the variable count is converted to a string representation, then the two
strings are concatenated into one longer string, and finally the definition of
println that accepts a single string is called.

Constructors are a good candidates for overloading. Several versions of a
constructor give us several ways to set up an object. For example, the
SnakeEyes program shown in Listing 4.6 instantiates two Die objects and
initializes them using different constructors.

The purpose of the program is to roll the dice and count the number of
times both dice show a 1 on the same throw (snake eyes). In this case, how-
ever, one die has 6 sides and the other has 20 sides. Each Die object is ini-
tialized using different constructors of the Die class. Listing 4.7 shows the
Die class.

Both Die constructors have the same name, but one takes no parameters
and the other takes an integer as a parameter. The compiler can examine the
invocation and determine which version of the method is intended.

The getFaceValue method is an accessor method since it provides read-
only access to faceValue. A mutator method for faceValue could look
like this:

public void setFaceValue (int Value)
{

facevalue = value;
}

However, this is not a good design because a client could use the method
to change the face value to an invalid value. Writing a better mutator method
is left as an exercise.

ch04.qxp 3/14/06 9:00 AM Page 220

4.3 method overloading 221

listing
4.6

//**
// SnakeEyes.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of a class with overloaded constructors.
//**

public class SnakeEyes
{

//---
// Creates two die objects, then rolls both dice a set number of
// times, counting the number of snake eyes that occur.
//---
public static void main (String[] args)
{

final int ROLLS = 500;
int snakeEyes = 0, num1, num2;

Die die1 = new Die(); // creates a six-sided die
Die die2 = new Die(20); // creates a twenty-sided die

for (int roll = 1; roll <= ROLLS; roll++)
{

num1 = die1.roll();
num2 = die2.roll();

if (num1 == 1 && num2 == 1) // check for snake eyes
snakeEyes++;

}

System.out.println ("Number of rolls: " + ROLLS);
System.out.println ("Number of snake eyes: " + snakeEyes);
System.out.println ("Ratio: " + (double)snakeEyes/ROLLS);

}
}

Number of rolls: 500
Number of snake eyes: 6
Ratio: 0.012

output

ch04.qxp 3/14/06 9:00 AM Page 221

222 CHAPTER 4 writing classes

listing
4.7

//**
// Die.java Author: Lewis/Loftus/Cocking
//
// Represents one die (singular of dice) with faces showing values
// between 1 and the number of faces on the die.
//**

import java.util.Random;

public class Die
{

private final int MIN_FACES = 4;

private static Random generator = new Random();
private int numFaces; // number of sides on the die
private int faceValue; // current value showing on the die

//---
// Defaults to a six-sided die. Initial face value is 1.
//---
public Die ()
{

numFaces = 6;
faceValue = 1;

}

//---
// Explicitly sets the size of the die. Defaults to a size of
// six if the parameter is invalid. Initial face value is 1.
//---
public Die (int faces)
{

if (faces < MIN_FACES)
numFaces = 6;

else
numFaces = faces;

faceValue = 1;
}

//---
// Rolls the die and returns the result.
//---
public int roll ()
{

faceValue = generator.nextInt(numFaces) + 1;

ch04.qxp 3/14/06 9:00 AM Page 222

4.4 method decomposition 223

4.4 method decomposition
Sometimes we want to do something so complicated we need more than one
method. One thing we can do is to break a method into several simpler meth-
ods to create a more understandable design. As an example, let’s examine a
program that translates English sentences into Pig Latin.

Pig Latin is a made-up language in which each word of a sentence is
changed by moving the first letter of the word to the end and adding “ay.”
For example, the word happy would be written and pronounced appyhay
and the word birthday would become irthdaybay. Words that begin with
vowels simply have a “yay” added on the end, turning the word enough into
enoughyay. Pairs of letters, called blends, such as “ch” and “st” are moved
to the end together, so grapefruit becomes apefruitgray.

The PigLatin program shown in Listing 4.8 reads one or more sen-
tences, translating each into Pig Latin.

The real workhorse behind the PigLatin program is the
PigLatinTranslator class, shown in Listing 4.9. An object of type
PigLatinTranslator provides a method called translate, which
accepts a string and translates it into Pig Latin. Note that the
PigLatinTranslator class does not contain a constructor because none is
needed.

listing
4.7 continued

return faceValue;
}

//---
// Returns the current die value.
//---
public int getFaceValue ()
{

return faceValue;
}

}

ch04.qxp 3/14/06 9:00 AM Page 223

224 CHAPTER 4 writing classes

listing
4.8

//**
// PigLatin.java Author: Lewis/Loftus/Cocking
//
// Driver to exercise the PigLatinTranslator class.
//**

import java.util.Scanner;

public class PigLatin
{

//---
// Reads sentences and translates them into Pig Latin.
//---
public static void main (String[] args)
{

String sentence, result, another = "y";
Scanner scan = new Scanner (System.in);
PigLatinTranslator translator = new PigLatinTranslator();

while (another.equalsIgnoreCase("y"))
{

System.out.println ();
System.out.println ("Enter a sentence (no punctuation):");
sentence = scan.nextLine();

System.out.println ();
result = translator.translate (sentence);
System.out.println ("That sentence in Pig Latin is:");
System.out.println (result);

System.out.println ();
System.out.print ("Translate another sentence (y/n)? ");
another = scan.nextLine();

}
}

}

ch04.qxp 3/14/06 9:00 AM Page 224

4.4 method decomposition 225

Enter a sentence (no punctuation):
Do you speak Pig Latin

That sentence in Pig Latin is:
oday ouyay eakspay igpay atinlay

Translate another sentence (y/n)? y

Enter a sentence (no punctuation):
Play it again Sam

That sentence in Pig Latin is:
ayplay ityay againyay amsay

Translate another sentence (y/n)? n

listing
4.8 continued

output

listing
4.9

//**
// PigLatinTranslator.java Author: Lewis/Loftus/Cocking
//
// Represents a translation system from English to Pig Latin.
// Demonstrates method decomposition and the use of StringTokenizer.
//**

import java.util.Scanner;

public class PigLatinTranslator
{

//---
// Translates a sentence of words into Pig Latin.
//---
public String translate (String sentence)
{

String result = "";

sentence = sentence.toLowerCase();
Scanner scan = new Scanner (sentence);

ch04.qxp 3/14/06 9:00 AM Page 225

226 CHAPTER 4 writing classes

listing
4.9 continued

while (scan.hasNext())
{

result += translateWord (scan.next());
result += " ";

}

return result;
}

//---
// Translates one word into Pig Latin. If the word begins with a
// vowel, the suffix "yay" is appended to the word. Otherwise,
// the first letter or two are moved to the end of the word,
// and "ay" is appended.
//---
private String translateWord (String word)
{

String result = "";

if (beginsWithVowel(word))
result = word + "yay";

else
if (beginsWithBlend(word))

result = word.substring(2) + word.substring(0,2) + "ay";
else

result = word.substring(1) + word.charAt(0) + "ay";

return result;
}

//---
// Determines if the specified word begins with a vowel.
//---
private boolean beginsWithVowel (String word)
{

String vowels = "aeiou";

char letter = word.charAt(0);

return (vowels.indexOf(letter) != -1);
}

ch04.qxp 3/14/06 9:00 AM Page 226

4.4 method decomposition 227

Translating an entire sentence into Pig Latin is not easy. One big method
would be very long and difficult to follow. A better solution is to break the
translate method into simpler methods and use several other support
methods to help.

The translate method uses a Scanner object to separate the string into
words. Recall that one role of the Scanner class (discussed in Chapter 2) is
to separate a string into smaller elements called tokens. In this case, the
tokens are separated by space characters so we can use the default white
space delimiters. The PigLatin program assumes that no punctuation is
included in the input.

The translate method passes each word to the private support method
translateWord. Even the job of translating one word is complicated, so
the translateWord method uses two other private methods,
beginsWithVowel and beginsWithBlend.

The beginsWithVowel method returns a boolean value that tells
translateWord whether the word begins with a vowel. Instead of checking

listing
4.9 continued

//---
// Determines if the specified word begins with a particular
// two-character consonant blend.
//---
private boolean beginsWithBlend (String word)
{

return (word.startsWith ("bl") || word.startsWith ("sc") ||
word.startsWith ("br") || word.startsWith ("sh") ||
word.startsWith ("ch") || word.startsWith ("sk") ||
word.startsWith ("cl") || word.startsWith ("sl") ||
word.startsWith ("cr") || word.startsWith ("sn") ||
word.startsWith ("dr") || word.startsWith ("sm") ||
word.startsWith ("dw") || word.startsWith ("sp") ||
word.startsWith ("fl") || word.startsWith ("sq") ||
word.startsWith ("fr") || word.startsWith ("st") ||
word.startsWith ("gl") || word.startsWith ("sw") ||
word.startsWith ("gr") || word.startsWith ("th") ||
word.startsWith ("kl") || word.startsWith ("tr") ||
word.startsWith ("ph") || word.startsWith ("tw") ||
word.startsWith ("pl") || word.startsWith ("wh") ||
word.startsWith ("pr") || word.startsWith ("wr"));

}
}

ch04.qxp 3/14/06 9:00 AM Page 227

228 CHAPTER 4 writing classes

each vowel separately, the code for this method declares a string of all the
vowels, and then invokes the String method indexOf to see whether the
first character of the word is in the vowel string. If the character cannot be
found, the indexOf method returns a value of –1.

The beginsWithBlend method also returns a boolean value. The body
of the method has one large expression that makes several calls to the
startsWith method of the String class. If any of these calls returns true,
because the word begins with a blend, then the beginsWithBlend method
returns true as well.

Note that the translateWord, beginsWithVowel, and
beginsWithBlend methods are all declared with private visibility. They do
not deal directly with clients outside the class. Instead, they only help the
translate method do its job. Because they have private visibility, they
cannot be called from outside this class. If the main method of the
PigLatin class attempted to call the translateWord method, for
instance, the compiler would issue an error message.

Whenever a method becomes large or complicated, we should consider
breaking it into simpler methods to create a more understandable
class design. First, however, we must consider how other classes
and objects can be defined to create better overall system design. In
an object-oriented design, breaking up methods must happen after
objects have been broken up.

4.5 object relationships
Classes, and their objects, can have particular types of relationships, or asso-
ciations, to each other. This section looks at associations between objects of
the same class. We then explore aggregation, in which one object is made up
of other objects, creating a “has-a” relationship.

Inheritance, which we introduced in Chapter 2, is another important rela-
tionship between classes. It creates a generalization, or an “is-a” relation-
ship, between classes. We examine inheritance in Chapter 7.

association
Two classes have a general association if they are “aware” of each other.
Objects of those classes may use each other. This is sometimes called a “use”
relationship.

An association can be described in general terms, such as the fact that an
Author object writes a Book object. Because association relationships are so

A complicated method can be
broken into several simpler
methods and helped by
support methods.

ke
y

co
nc

ep
t

ch04.qxp 3/14/06 9:00 AM Page 228

4.5 object relationships 229

general, they are very useful. We introduce uses of general associations
throughout the book.

association between objects of the same class
Some associations occur between two objects of the same class. That
is, a method of one object takes as a parameter another object of the
same class. The operation performed often involves the internal data
of both objects.

The concat method of the String class is an example of this. The
method is executed through one String object and gets another String
object as a parameter. For example:

str3 = str1.concat(str2);

The String object executing the method (str1) attaches its characters to
those of the String passed as a parameter (str2). A new String object is
returned as a result (and stored as str3).

The RationalNumbers program shown in Listing 4.10 works like this.
Recall that a rational number is a value that can be represented as a
fraction, such as 2/2 (which equals 1), or 35/5 (which equals 7), or 1/2.

listing
4.10

//**
// RationalNumbers.java Author: Lewis/Loftus/Cocking
//
// Driver to exercise the use of multiple Rational objects.
//**

public class RationalNumbers
{

//---
// Creates some rational number objects and performs various
// operations on them.
//---
public static void main (String[] args)
{

Rational r1 = new Rational (6, 8);
Rational r2 = new Rational (1, 3);
Rational r3, r4, r5, r6, r7;

System.out.println ("First rational number: " + r1);
System.out.println ("Second rational number: " + r2);

A method invoked through one
object may take as a parameter
another object of the same
class.

key
concept

ch04.qxp 3/14/06 9:00 AM Page 229

The RationalNumbers program creates two objects representing rational
numbers and then does things to them to produce new rational numbers.

The Rational class is shown in Listing 4.11. Each object of type
Rational represents one rational number. The Rational class contains
operations on rational numbers, such as addition and subtraction.

The methods of the Rational class, such as add, subtract, multiply,
and divide, use the Rational object that is executing the method as the
first (left) operand and the Rational object passed as a parameter as the
second (right) operand.

Note that some of the methods in the Rational class are private
because we don’t want them executed directly from outside a Rational
object. They are there only to support the other services of the object.

230 CHAPTER 4 writing classes

listing
4.10 continued

if (r1.equals(r2))
System.out.println ("r1 and r2 are equal.");

else
System.out.println ("r1 and r2 are NOT equal.");

r3 = r1.reciprocal();
System.out.println ("The reciprocal of r1 is: " + r3);

r4 = r1.add(r2);
r5 = r1.subtract(r2);
r6 = r1.multiply(r2);
r7 = r1.divide(r2);

System.out.println ("r1 + r2: " + r4);
System.out.println ("r1 - r2: " + r5);
System.out.println ("r1 * r2: " + r6);
System.out.println ("r1 / r2: " + r7);

}
}

First rational number: 3/4
Second rational number: 1/3
r1 and r2 are NOT equal.
The reciprocal of r1 is: 4/3
r1 + r2: 13/12
r1 - r2: 5/12
r1 * r2: 1/4
r1 / r2: 9/4

output

ch04.qxp 3/14/06 9:00 AM Page 230

4.5 object relationships 231

listing
4.11

//**
// Rational.java Author: Lewis/Loftus/Cocking
//
// Represents one rational number with a numerator and denominator.
//**

public class Rational
{

private int numerator, denominator;

//---
// Sets up the rational number by ensuring a nonzero denominator
// and making only the numerator signed.
//---
public Rational (int numer, int denom)
{

if (denom == 0)
denom = 1;

// Make the numerator "store" the sign
if (denom < 0)
{

numer = numer * -1;
denom = denom * -1;

}

numerator = numer;
denominator = denom;

reduce();
}

//---
// Returns the numerator of this rational number.
//---
public int getNumerator ()
{

return numerator;
}

//---
// Returns the denominator of this rational number.
//---
public int getDenominator ()
{

return denominator;
}

ch04.qxp 3/14/06 9:00 AM Page 231

232 CHAPTER 4 writing classes

listing
4.11 continued

//---
// Returns the reciprocal of this rational number.
//---
public Rational reciprocal ()
{

return new Rational (denominator, numerator);
}

//---
// Adds this rational number to the one passed as a parameter.
// A common denominator is found by multiplying the individual
// denominators.
//---
public Rational add (Rational op2)
{

int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int sum = numerator1 + numerator2;

return new Rational (sum, commonDenominator);
}

//---
// Subtracts the rational number passed as a parameter from this
// rational number.
//---
public Rational subtract (Rational op2)
{

int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int difference = numerator1 - numerator2;

return new Rational (difference, commonDenominator);
}

//---
// Multiplies this rational number by the one passed as a
// parameter.
//---
public Rational multiply (Rational op2)
{

int numer = numerator * op2.getNumerator();
int denom = denominator * op2.getDenominator();

ch04.qxp 3/14/06 9:00 AM Page 232

4.5 object relationships 233

listing
4.11 continued

return new Rational (numer, denom);
}

//---
// Divides this rational number by the one passed as a parameter
// by multiplying by the reciprocal of the second rational.
//---
public Rational divide (Rational op2)
{

return multiply (op2.reciprocal());
}

//---
// Determines if this rational number is equal to the one passed
// as a parameter. Assumes they are both reduced.
//---
public boolean equals (Rational op2)
{

return (numerator == op2.getNumerator() &&
denominator == op2.getDenominator());

}

//---
// Returns this rational number as a string.
//---
public String toString ()
{

String result;

if (numerator == 0)
result = "0";

else
if (denominator == 1)

result = numerator + "";
else

result = numerator + "/" + denominator;

return result;
}

//---
// Reduces this rational number by dividing both the numerator
// and the denominator by their greatest common divisor.
//---

ch04.qxp 3/14/06 9:00 AM Page 233

aggregation
Some objects are made up of other objects. A car, for instance, is made up of

its engine, its chassis, its wheels, and lots of other parts. Each of these
other parts are separate objects. Therefore we can say that a car is an
aggregation—it is made up of other objects. Aggregation is sometimes
described as a has-a relationship. For instance, a car has a chassis.

In the software world, an aggregate object is any object that has other
objects as instance data. For example, an Account object contains, among
other things, a String object that is the name of the account owner. That
makes each Account object an aggregate object.

Let’s consider another example. The program StudentBody shown in
Listing 4.12 creates two Student objects. Each Student object is made up
of two Address objects, one for the student’s college address and another
for the student’s home address. The main method just creates these objects

234 CHAPTER 4 writing classes

listing
4.11 continued

private void reduce ()
{

if (numerator != 0)
{

int common = gcd (Math.abs(numerator), denominator);

numerator = numerator / common;
denominator = denominator / common;

}
}

//---
// Computes and returns the greatest common divisor of the two
// positive parameters. Uses Euclid's algorithm.
//---
private int gcd (int num1, int num2)
{

while (num1 != num2)
if (num1 > num2)

num1 = num1 - num2;
else

num2 = num2 - num1;

return num1;
}

}

An aggregate object is made
up, in part, of other objects,
forming a has-a relationship.ke

y
co

nc
ep

t

ch04.qxp 3/14/06 9:00 AM Page 234

4.5 object relationships 235

listing
4.12

//**
// StudentBody.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of an aggregate class.
//**

public class StudentBody
{

//---
// Creates some Address and Student objects and prints them.
//---
public static void main (String[] args)
{

Address school = new Address ("800 Lancaster Ave.", "Villanova",
"PA", 19085);

Address jHome = new Address ("21 Jump Street", "Lynchburg",
"VA", 24551);

Student john = new Student ("John", "Gomez", jHome, school);

Address mHome = new Address ("123 Main Street", "Euclid", "OH",
44132);

Student marsha = new Student ("Marsha", "Jones", mHome, school);

System.out.println (john);
System.out.println ();
System.out.println (marsha);

}
}

John Gomez
Home Address:
21 Jump Street
Lynchburg, VA 24551
School Address:
800 Lancaster Ave.
Villanova, PA 19085

Marsha Jones
Home Address:
123 Main Street
Euclid, OH 44132
School Address:
800 Lancaster Ave.
Villanova, PA 19085

output

ch04.qxp 3/14/06 9:00 AM Page 235

236 CHAPTER 4 writing classes

and prints them out. Note that we once again pass objects to the println
method, relying on the automatic call to the toString method to create
something suitable for printing.

The Student class shown in Listing 4.13 represents a single college stu-
dent. This class would have to be huge if it were to represent all aspects of a
student. We’re keeping it simple for now so that the object aggregation is
clear. The instance data of the Student class includes two references to

listing
4.13

//**
// Student.java Author: Lewis/Loftus/Cocking
//
// Represents a college student.
//**

public class Student
{

private String firstName, lastName;
private Address homeAddress, schoolAddress;

//---
// Sets up this Student object with the specified initial values.
//---
public Student (String first, String last, Address home,

Address school)
{

firstName = first;
lastName = last;
homeAddress = home;
schoolAddress = school;

}

//---
// Returns this Student object as a string.
//---
public String toString()
{

String result;

result = firstName + " " + lastName + "\n";
result += "Home Address:\n" + homeAddress + "\n";
result += "School Address:\n" + schoolAddress;

return result;
}

}

ch04.qxp 3/14/06 9:00 AM Page 236

4.5 object relationships 237

Address objects: homeAddress and schoolAddress. We refer to those
objects in the toString method when we create a string representation of
the student. Because we are concatenating an Address object to another
string, the toString method in Address is automatically called.

The Address class is shown in Listing 4.14. It contains only the parts of
a street address. Note that nothing about the Address class indicates that it
is part of a Student object. The Address class is general so it could be used
in any situation in which a street address is needed.

listing
4.14

//**
// Address.java Author: Lewis/Loftus/Cocking
//
// Represents a street address.
//**

public class Address
{

private String streetAddress, city, state;
private int zipCode;

//---
// Sets up this Address object with the specified data.
//---
public Address (String street, String town, String st, int zip)
{

streetAddress = street;
city = town;
state = st;
zipCode = zip;

}

//---
// Returns this Address object as a string.
//---
public String toString()
{

String result;

result = streetAddress + "\n";
result += city + ", " + state + " " + zipCode;

return result;
}

}

ch04.qxp 3/14/06 9:00 AM Page 237

figure 4.8 Some methods of the Applet class

public void init ()
Initializes the applet. Called just after the applet is loaded.

public void start ()
Starts the applet. Called just after the applet is made active.

public void stop ()
Stops the applet. Called just after the applet is made inactive.

public void destroy ()
Destroys the applet. Called when the browser is exited.

public URL getCodeBase ()
Returns the URL at which this applet's bytecode is located.

public URL getDocumentBase ()
Returns the URL at which the HTML document containing this applet is
located.

public AudioClip getAudioClip (URL url, String name)
Retrieves an audio clip from the specified URL.

public Image getImage (URL url, String name)
Retrieves an image from the specified URL.

Fig 04-13

238 CHAPTER 4 writing classes

To work with the AP* Case Study section for this chapter, go to
www.aw.com/cssupport and look under author: Lewis/Loftus/Cocking.

4.6 applet methods
In Chapter 3 we used the paint method to draw the con-
tents of an applet on a screen. An applet has several other
methods, too. Figure 4.8 lists several applet methods.

The init method is executed once when the applet is
first loaded, such as when the browser or appletviewer first

views the applet. So the init method is the place to initialize the applet’s
environment and permanent data.

The start and stop methods of an applet are called when the applet
becomes active or inactive, respectively. For example, after we use a browser

G
R
A
P
H
I
C
S

T
R
A
C
K

Several methods of the Applet
class are designed to facilitate
their execution in a Web
browser.

ke
y

co
nc

ep
t

AP* case study.

ch04.qxp 3/14/06 9:00 AM Page 238

to load an applet, the applet’s start method is called. When we leave that
page the applet becomes inactive and the stop method is called. If we return
to the page, the applet becomes active again and the start method is called
again. Note that the init method is called once when the applet is loaded,
but start may be called several times as the page is revisited. It is good prac-
tice to use start and stop if an applet actively uses CPU time, such as when
it is showing an animation, so that CPU time is not wasted.

Reloading the Web page in the browser does not necessarily reload the
applet. To force the applet to reload, most browsers need the user to press a
key combination. For example, in Netscape Navigator, the user can hold
down the shift key while pressing the reload button to reload the Web page
and reload (and reinitialize) all applets linked to that page.

The getCodeBase and getDocumentBase methods determine where the
applet’s bytecode or HTML document resides. An applet could use the URL
to get more resources, such as an image or audio clip, using the applet meth-
ods getImage or getAudioClip.

We use these applet methods throughout this book.

4.7 graphical objects
Often an object has a graphical representation. Consider the LineUp applet
shown in Listing 4.15. It creates several StickFigure objects, of different
colors and heights. The StickFigure objects are instantiated in the init
method of the applet, so they are created only once, when the applet is first
loaded.

The paint method asks that the stick figures redraw themselves whenever
the method is called. The paint method is called whenever something hap-
pens that might change the graphic representation of the applet itself. For
instance, when the window that the applet is displayed in is moved, paint
redraws the applet contents.

The StickFigure class is shown in Listing 4.16. Like any other object,
a StickFigure object contains data that defines its state, such as the posi-
tion, color, and height of the figure. The draw method contains the individ-
ual commands that draw the figure itself.

4.7 graphical objects 239

ch04.qxp 3/14/06 9:00 AM Page 239

240 CHAPTER 4 writing classes

listing
4.15

//**
// LineUp.java Author: Lewis/Loftus/Cocking
//
// Demonstrates the use of a graphical object.
//**

import java.util.Random;
import java.applet.Applet;
import java.awt.*;

public class LineUp extends Applet
{

private final int APPLET_WIDTH = 400;
private final int APPLET_HEIGHT = 150;
private final int HEIGHT_MIN = 100;
private final int VARIANCE = 40;

private StickFigure figure1, figure2, figure3, figure4;

//---
// Creates several stick figures with varying characteristics.
//---
public void init ()
{

int h1, h2, h3, h4; // heights of stick figures
Random generator = new Random();

h1 = HEIGHT_MIN + generator.nextInt(VARIANCE);
h2 = HEIGHT_MIN + generator.nextInt(VARIANCE);
h3 = HEIGHT_MIN + generator.nextInt(VARIANCE);
h4 = HEIGHT_MIN + generator.nextInt(VARIANCE);

figure1 = new StickFigure (100, 150, Color.red, h1);
figure2 = new StickFigure (150, 150, Color.cyan, h2);
figure3 = new StickFigure (200, 150, Color.green, h3);
figure4 = new StickFigure (250, 150, Color.yellow, h4);

setBackground (Color.black);
setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

ch04.qxp 3/14/06 9:00 AM Page 240

4.7 graphical objects 241

listing
4.15 continued

//---
// Paints the stick figures on the applet.
//---
public void paint (Graphics page)
{

figure1.draw (page);
figure2.draw (page);
figure3.draw (page);
figure4.draw (page);

}
}

display

ch04.qxp 3/14/06 9:00 AM Page 241

242 CHAPTER 4 writing classes

listing
4.16

//**
// StickFigure.java Author: Lewis/Loftus/Cocking
//
// Represents a graphical stick figure.
//**

import java.awt.*;

public class StickFigure
{

private int baseX; // center of figure
private int baseY; // floor (bottom of feet)
private Color color; // color of stick figure
private int height; // height of stick figure

//---
// Sets up the stick figure's primary attributes.
//---
public StickFigure (int center, int bottom, Color shade, int size)
{

baseX = center;
baseY = bottom;
color = shade;
height = size;

}

//---
// Draws this figure relative to baseX, baseY, and height.
//---
public void draw (Graphics page)
{

int top = baseY - height; // top of head

page.setColor (color);

page.drawOval (baseX-10, top, 20, 20); // head

page.drawLine (baseX, top+20, baseX, baseY-30); // trunk

page.drawLine (baseX, baseY-30, baseX-15, baseY); // legs
page.drawLine (baseX, baseY-30, baseX+15, baseY);

page.drawLine (baseX, baseY-70, baseX-25, baseY-70); // arms
page.drawLine (baseX, baseY-70, baseX+20, baseY-85);

}
}

ch04.qxp 3/14/06 9:00 AM Page 242

◗ Each object has a state and a set of behaviors. The values of an
object’s variables define its state. The methods to which an object
responds define its behaviors.

◗ A class is a blueprint of an object; it saves no memory space for data.
Each object has its own data space, thus its own state.

◗ The scope of a variable determines where it can be referenced and
depends on where it is declared.

◗ Objects should be encapsulated. The rest of a program should interact
with an object only through its public methods.

◗ Instance variables should be declared with private visibility to protect
their data.

◗ A method must return a value that matches the return type in the
method header.

◗ When a method is called, the actual parameters are copied into the
formal parameters. The types of parameters must match.

◗ A constructor cannot have any return type, even void.

◗ A precondition is a condition that should be true when a method is
called. A postcondition is a condition that should be true when a
method finishes executing.

◗ A variable declared in a method cannot be used outside of it.

◗ Most objects contain accessor and mutator methods to allow the
client to manage data in a controlled manner.

◗ The versions of an overloaded method can be told apart by their sig-
natures. The number, type, and order of their parameters must be
different.

◗ A complicated method can be broken up into simpler methods that
act as private support methods.

◗ A method called through one object may take another object of the
same class as a parameter.

◗ An aggregate object is made up of other objects, forming a has-a
relationship.

◗ Several methods of the Applet class are designed to work in a Web
browser.

summary of key concepts 243

ch04.qxp 3/14/06 9:00 AM Page 243

244 CHAPTER 4 writing classes

self-review questions
4.1 What is the difference between an object and a class?

4.2 What is the scope of a variable?

4.3 Objects should be self-governing. Explain.

4.4 What is a modifier?

4.5 Describe each of the following:

a. public method

b. private method

c. public variable

d. private variable

4.6 What does the return statement do?

4.7 Explain the difference between an actual parameter and a formal
parameter.

4.8 What are constructors used for? How are they defined?

4.9 How can you tell overloaded methods apart?

4.10 What can you do to avoid long, complex methods?

4.11 Explain how a class can have an association with itself.

4.12 What is an aggregate object?

4.13 What do the start and stop methods of an applet do?

multiple choice
4.1 Object is to class as

a. circle is to square

b. house is to blueprint

c. blueprint is to house

d. bicycle is to car

e. car is to bicycle

ch04.qxp 3/14/06 9:00 AM Page 244

multiple choice 245

4.2 When a Coin object is passed to the println method,

a. a compile error occurs

b. a runtime error occurs

c. the toString method is called on the object to get the string
to print

d. a default string that includes the class name is generated

e. the Coin is flipped and the result printed

4.3 Which of the following should be used for services that an object
provides to client code?

a. private variables

b. public variables

c. private methods

d. public methods

e. none of the above

4.4 The values passed to a method when it is called are

a. formal parameters

b. actual parameters

c. primitive values

d. objects

e. return values

4.5 Consider the following code:

int cube(int x)
{

x = 3;
return x * x * x;

}

What is returned by the call cube(2)?

a. 2

b. 3

c. 8

d. 9

e. 27

ch04.qxp 3/14/06 9:00 AM Page 245

246 CHAPTER 4 writing classes

4.6 Method overloading refers to

a. a method with 10 or more parameters

b. a method with a very large body

c. a method that performs too many tasks and should be divided
into support methods

d. more than one method with the same name

e. more than one method with the same numbers and types of
parameters

4.7 Consider the following code:

int sum(int n)
{

int total = 0;
for (int i=1; i <= n; i++)

return total;

}

What statement should go in the body of the for loop so that
the sum of the first n integers is returned?

a. total += i;

b. total += 1;

c. total += n;

d. total = n + 1;

e. total += n - 1;

4.8 What will be printed when the method printStuff is called?

int calc(double a, double b)
{

int num = a * b;
b = a;
num = a + b;
return num;

}
void printStuff()
{

double x = 5.1, y = 6.2;
System.out.println(calc(x,0) + calc(0,y));

}

ch04.qxp 3/14/06 9:00 AM Page 246

true/false 247

a. 5.16.2

b. 11.3

c. 10.20

d. 0

e. There will be a compile error because a double cannot be
assigned to an int without a cast.

4.9 The keyword void is placed in front of a method name when it
is declared to indicate that

a. the method does not return a value

b. the method is a constructor

c. the method is overloaded

d. the method should be called only within its class

e. the method returns a value of an unknown type

4.10 Consider the following method:

double doIt(double x)
{

while (x > 0)
x -= 3;

}

What is it missing?

a. a declaration of the variable x

b. a return statement

c. a body

d. a name

e. a parameter

true/false
4.1 Instance variables that are declared public violate the principle

of encapsulation.

4.2 Every method must have a return statement.

4.3 A constructor must have the same name as its class.

4.4 A variable declared in one method may be used in any other
method in the same class.

ch04.qxp 3/14/06 9:00 AM Page 247

248 CHAPTER 4 writing classes

4.5 Overloaded methods have a signature, which includes the num-
ber, type, and order of parameters.

4.6 An object may be made up of other objects.

4.7 Only one object may be created from a particular class.

4.8 Methods that provide services to clients should be made private.

4.9 Constructors should always return void.

4.10 Parameters to methods may only be primitive types.

short answer
4.1 Write a method header for a method named translate that

takes an integer parameter and returns a double.

4.2 Write a method header for a method named find that takes a
String and a double as parameters and returns an integer.

4.3 Write a method header for a method named printAnswer that
takes three doubles as parameters and doesn’t return anything.

4.4 Write the body of the method for the following header. The
method should return a welcome message that includes the user’s
name and visitor number. For example, if the parameters were
“Joe” and 5, the returned string would be "Welcome Joe!
You are visitor number 5."
String welcomeMessage (String name, int
visitorNum)

4.5 Write a method called powersOfTwo that prints the first 10
powers of 2 (starting with 2). The method takes no parameters
and doesn’t return anything.

4.6 Write a method called alarm that prints the string "Alarm!"
several times on separate lines. The method should accept an
integer parameter that tells it how many times the string is
printed. Print an error message if the parameter is less than 1.

4.7 Write a method called sum100 that adds up all the numbers
from 1 to 100, inclusive and returns the answer.

4.8 Write a method called maxOfTwo that accepts two integer
parameters from the user and returns the larger of the two.

ch04.qxp 3/14/06 9:00 AM Page 248

short answer 249

4.9 Write a method called sumRange that accepts two integer
parameters that represent a range such as 50 to 75. Issue an
error message and return zero if the second parameter is less
than the first. Otherwise, the method should return the sum of
the integers in that range (inclusive).

4.10 Write a method called larger that accepts two floating point
parameters (of type double) and returns true if the first parame-
ter is greater than the second, and false if it is less than the
second.

4.11 Write a method called countA that accepts a String parameter
and returns the number of times the character 'A' is found in
the string.

4.12 Write a method called evenlyDivisible that accepts two inte-
ger parameters and returns true if the first parameter can be
evenly divided by the second, or vice versa, and false if it can’t
be. Return false if either parameter is zero.

4.13 Write a method called average that accepts two integer param-
eters and returns their average as a floating point value.

4.14 Overload the average method of Exercise 4.13 so that the
method returns the average of three integers.

4.15 Overload the average method of Exercise 4.13 to take four
integer parameters and return their average.

4.16 Write a method called multiConcat that takes a String and
an integer as parameters. Return a String made up of the
string parameter concatenated with itself count times, where
count is the integer. For example, if the parameter values are
"hi" and 4, the return value is "hihihihi". Return the origi-
nal string if the integer parameter is less than 2.

4.17 Overload the multiConcat method from Exercise 4.16 so that
if the integer parameter is not provided, the method returns the
string concatenated with itself. For example, if the parameter is
"test", the return value is "testtest".

4.18 Write a method called isAlpha that accepts a character parame-
ter and returns true if that character is an uppercase or lower-
case alphabetic letter.

ch04.qxp 3/14/06 9:00 AM Page 249

250 CHAPTER 4 writing classes

4.19 Write a method called floatEquals that accepts three floating
point values as parameters. The method should return true if the
first two parameters are no further apart from each other than
the third parameter. For example, floatEquals (2.453,
2.459, 0.01) should return true because 2.453 and 2.459
are 0.006 apart from each other and 0.006 is less than 0.01.
Hint: See the discussion in Chapter 3 on comparing floating
point values for equality.

4.20 Write a method called reverse that accepts a String parame-
ter and returns a string made up of the characters of the parame-
ter in reverse order. There is a method in the String class that
performs this operation, but for the sake of this exercise, you
should write your own.

4.21 Write a mutator method for faceValue in the Die class in
Listing 4.7. The method should only allow faceValue to take
on a valid value.

4.22 Write a method called isIsosceles that accepts the lengths of
the sides of a triangle as its parameters. The method returns true
if the triangle is isosceles but not equilateral (meaning that
exactly two of the sides have an equal length), and false if all
three sides are equal or if none of the sides are equal.

4.23 Write a method called randomInRange that accepts two integer
parameters representing a range such as 30 to 50. The method
should return a random integer in the specified range (inclusive).
Return zero if the first parameter is greater than the second.

4.24 Write a method called randomColor that creates and returns a
random Color object. Recall that a Color object has three val-
ues between 0 and 255, representing the contributions of red,
green, and blue (its RGB value).

4.25 Write a method called drawCircle that draws a circle based
on these parameters: a Graphics object through which to draw
the circle, two integer values for the (x, y) coordinates of the
center of the circle, another integer for the circle’s radius, and a
Color object for the circle’s color. The method does not return
anything.

4.26 Overload the drawCircle method of Exercise 4.24 so that if
the Color parameter is not provided, the circle’s color will be
black.

ch04.qxp 3/14/06 9:00 AM Page 250

programming projects 251

programming projects
4.1 Change the Account class so that funds can be moved from one

account to another. Think of this as withdrawing money from
one account and depositing it into another. Change the main
method of the Banking class to show this new service.

4.2 Change the Account class so that it also lets a user open an
account with just a name and an account number, and a starting
balance of zero. Change the main method of the Banking class
to show this new capability.

4.3 Write an application that rolls a die and displays the result. Let
the user pick the number of sides on the die. Use the Die class to
represent the die in your program.

4.4 Design and implement a class called PairOfDice, with two six-
sided Die objects. Create a driver class called BoxCars with a
main method that rolls a PairOfDice object 1000 times, count-
ing the number of box cars (two sixes) that occur.

4.5 Using the PairOfDice class from Programming Project 4.4,
design and implement a class to play a game called Pig. In this
game, the user competes against the computer. On each turn, the
player rolls a pair of dice and adds up his or her points.
Whoever reaches 100 points first, wins. If a player rolls a 1, he
or she loses all points for that round and the dice go to the other
player. If a player rolls two 1s in one turn, the player loses all
points earned so far in the game and loses control of the dice.
The player may voluntarily turn over the dice after each roll. So
the player must decide to either roll again (be a pig) and risk los-
ing points, or give up the dice, possibly letting the other player
win. Set up the computer player so that it always gives up the
dice after getting 20 or more points in a round.

4.6 Design and implement a class called Card that represents a stan-
dard playing card. Each card has a suit and a face value. Create
a program that deals 20 random cards.

4.7 Write an application that lets the user add, subtract, multiply,
or divide two fractions. Use the Rational class in your
implementation.

4.8 Change the Student class (Listing 4.13) so that each student
object also contains the scores for three tests. Provide a construc-
tor that sets all instance values based on parameter values.
Overload the constructor so that each test score starts out at
zero. Provide a method called setTestScore that accepts two

ch04.qxp 3/14/06 9:00 AM Page 251

252 CHAPTER 4 writing classes

parameters: the test number (1 through 3) and the score. Also
provide a method called getTestScore that accepts the test
number and returns the score. Provide a method called average
that computes and returns the average test score for this student.
Modify the toString method so that the test scores and aver-
age are included in the description of the student. Modify the
driver class main method to exercise the new Student methods.

4.9 Design and implement a class called Building that represents a
drawing of a building. The parameters to the constructor should
be the building’s width and height. Each building should be col-
ored black and have a few random windows colored yellow.
Create an applet that draws a random skyline of buildings.

4.10 Create a class called Crayon that represents one crayon of a
particular color and length (height). Design and implement an
applet that draws a box of crayons.

AP*-style multiple choice
Questions 4.1–4.3 refer to the following class.

public class Point

{
private int myX;
private int myY;

public Point()
{

myX = 0;
myY = 0;

}

public Point(int x, int y)
{

myX = x;
myY = y;

}

public int getX()
{

return myX;
}

public int getY()
{

return myY;
}

}

ch04.qxp 3/14/06 9:00 AM Page 252

AP*-style multiple choice 253

4.1 Which of the following statements creates a point with coordi-
nates (0,0)?

I. p = new Point();

II. p = Point(0,0);

III. p = (0,0);

(A) I only

(B) II only

(C) III only

(D) I and II only

(E) II and III only

4.2 Which of the following statements is true regarding the Point
class?

(A) The class won’t compile because there are two methods
named Point.

(B) Variables myX and myY can be changed from outside the class.

(C) Point objects are immutable.

(D) It’s impossible to create Point objects with coordinates other
than (0,0).

(E) Giving myX and myY private visibility was a poor design
decision.

4.3 Suppose we want to add to the Point class a method with the
following signature.

// Sets the x coordinate of the point to the given value
public void setX(int x)

Which statement should be in the body of the method?

(A) x = myX;

(B) myX = x;

(C) myX = 0;

(D) x = 0;

(E) myX = myY;

ch04.qxp 3/14/06 9:00 AM Page 253

254 CHAPTER 4 writing classes

4.4 Consider a method that will calculate and return the sales tax on
an item. Which method signature would be most appropriate?

(A) int computeTax(double price)

(B) void computeTax(double price)

(C) int computeTax()

(D) double computeTax(double price)

(E) void computeTax()

Questions 4.5–4.6 refer to the following method.

int doSomething(int k, int j)
{

while (k > j)
k--;

if (k < j)
j = k;

else
return j;

return k;
}

4.5 What best characterizes the return value of this method?

(A) Returns k - j

(B) Returns j - k

(C) Returns the smaller of j and k

(D) Returns the larger of j and k

(E) Returns j if k and j are equal, k otherwise

4.6 Consider the following code segment.

int p = 5;
int q = 6;
doSomething(p, q);
System.out.println(p + " " + q);

What is printed?

(A) 5 6

(B) 5 5

(C) 6 6

(D) p q

(E) There is a compile error because the return value of
doSomething is not stored in a variable.

ch04.qxp 3/14/06 9:00 AM Page 254

AP*-style free response 255

AP*-style free response
4.1 Consider the following incomplete declaration of a Code class

which represents a code consisting of letters and digits. The
actual code is stored internally as a String variable, myCode.
Portions of the code may be hidden by changing the correspon-
ding letter or digit to an X. Hidden portions may later be
recovered.

public class Code
{

private String myCode;
// additional instance variables

public Code(String code)
{

myCode = code;
// possibly additional statements

}

public String getCode()
{

return myCode;
}

// precondition: p1 >= 0, p1 < p2,
// p2 <= myCode.length()
// Replaces the characters in the code starting at
// position p1 until position p2-1 inclusive with an X
public void hide(int p1, int p2)
{

// to be implemented
}

// precondition: p1 >= 0, p1 < p2,
// p2 <= myCode.length()
// Restores to their original values the characters in
// the code starting at position p1 until position
// p2-1 inclusive
public void recover(int p1, int p2)
{

// to be implemented
}

}

The methods hide and recover work as described in the com-
ments. Note that if hide is called for a portion of the code that
is already hidden, it has no effect and if recover is called for a
portion of the code that is already “clear,” it has no effect.

ch04.qxp 3/14/06 9:00 AM Page 255

256 CHAPTER 4 writing classes

Suppose the following code is created:

Code code = new Code("ABCdef123ghi456jklMNO");

The following sequence of method calls results in the instance
variable myCode having the indicated values.

Value of myCode
code.hide(2,7); ABXXXXX23ghi456jklMNO

code.recover(5,9); ABXXXf123ghi456jklMNO

code.hide(3,14); ABXXXXXXXXXXXX6jklMNO

code.hide(6,10); ABXXXXXXXXXXXX6jklMNO

code.recover(5,6); ABXXXfXXXXXXXX6jklMNO

code.recover(0,14); ABCdef123ghi456jklMNO

a. Thinking ahead to implementing the hide and recover meth-
ods, declare in this part any additional instance variables
you will need and any additional code you may need in the
constructor.

// instance variables
String myCode;

Code(String code)
{

myCode = code;

}

b. Implement the hide method.

c. Implement the recover method.

answers to self-review questions
4.1 A class is the blueprint of an object. It defines the variables and

methods that will be a part of every object that is instantiated
from it. But a class saves no memory space for variables. Each
object has its own data space and therefore its own state.

ch04.qxp 3/14/06 9:00 AM Page 256

answers to self-review questions 257

4.2 The scope of a variable is where in a program the variable can
be referenced. An instance variable, declared at the class level,
can be referenced in any method of the class. Local variables,
including the formal parameters, declared within a particular
method, can be referenced only in that method.

4.3 A self-governing object controls the values of its own data.
Encapsulated objects, which don’t allow an external client to
reach in and change the data, are self-governing.

4.4 A modifier is a Java reserved word that can be used in the defi-
nition of a variable or method and that defines certain character-
istics. For example, if a variable has private visibility, it cannot
be directly accessed from outside the object.

4.5 The modifiers affect the methods and variables in the following
ways:

a. A public method is called a service method because it defines a
service that the object provides.

b. A private method is called a support method because it cannot
be called from outside the object and because it supports the
activities of other methods in the class.

c. A public variable is a variable that can be directly read and
changed by a client. This violates the principle of encapsulation
and should be avoided.

d. A private variable can be read and changed only from within
the class. Variables almost always are declared with private
visibility.

4.6 An explicit return statement spells out the value that is
returned from a method. The type of the return value must
match the return type in the method definition.

4.7 An actual parameter is a value sent to a method when the
method is invoked. A formal parameter is the matching variable
in the header of the method declaration; it takes on the value of
the actual parameter so that it can be used inside the method.

4.8 Constructors are special methods used to initialize the object
when it is instantiated. A constructor has the same name as its
class, and it does not return a value.

4.9 Overloaded methods have a unique signature, which includes the
number, order, and type of the parameters. The return type is
not part of the signature.

ch04.qxp 3/14/06 9:00 AM Page 257

258 CHAPTER 4 writing classes

4.10 Dividing a complex method into several support methods simpli-
fies the design of the program.

4.11 A method executed through an object might take another object
created from the same class as a parameter. For example, the
concat method of the String class is executed through one
String object and takes another String object as a parameter.

4.12 An aggregate object has other objects as instance data. That is,
an aggregate object is made up of other objects.

4.13 The Applet start method is called automatically every time
the applet becomes active, such as when a browser opens the
page it is on. The stop method is called automatically when the
applet becomes inactive.

ch04.qxp 3/14/06 9:00 AM Page 258

