T he first step towards wisdom is calling things by their right names.

OLD CHINESE PROVERB

Egumtively speaking, killing two birds with one stone may be good, but killing three, four, or even more
birds with one stone is even better.
V. OreHck I

Stop./ Who would cross the Bridge of Death must answer me these questions three, ere the other side
he see.
THE BRIDGEKEEPER (TERRY GILLIAM), IN MONTY PYTHON AND THE HOLY GRAIL

Objectives

Upon completion of this chapter, you should be able to:

Use variables to store values for use later in a method
Use a variable to store the value of an arithmetic expression

Use a variable to store the value produced by a function

Use parameters to write methods that are more broadly useful

Define and access property variables

O oOQC0odCC

Use the vehicle property to synchronize the movements of two objects

Create functions — messages that return a value to their sender

66 Section 3.1 Method Varicbles

In Chapter 2, we saw how to define world and object methods. In this chapter, we turn
our attention to variables, the use of which can make it easier to define methods. In
computer programming, a variable is a name that refers to a piece of the program’s
memory, in which a value can be stored, retrieved, and changed.

Alice provides several different kinds of variables that we will examine in this chap-
ter. The first kind is the method variable, which lets us store a value within a method for
later use. The second kind is the parameter, which lets us write methods that are more
broadly useful. These first two kinds of variables are created using the two buttons that
appear on the right edge of every Alice method, as shown in Figure 3-1.

‘ worId.cene1

4 public void scene1 () {

create new parameter
create new variable |

4 Bdonorder{

FIGURE 3-1 The buttons to create variables and parameters

The third and final kind of variable is the object variable or property variable,
which lets us store a property of an object. Object variables are created using the create
new variable button under the properties pane of the details area.

In this chapter, we'll see how to create and use all three kinds of variables.

3.1 Method Variables

Method variables are names defined within a method that refer to program memory in
which values can be stored. When we click the create new variable button within a
method, Alice asks us what we want to name the variable, the type of information we
want to store in it, and its initial value. When we have told it these things, Alice reserves
as much program memory as is needed for that type of information, and associates the
name with that memory, which is called defining the variable. Method variables are often
called local variables, because they can only be accessed from within the method in
which they are defined — they are local to it.

One common use of method variables is to compute and store values that will be
used later, especially values that will be used more than once. Another common use is to
store values that the user enters. In the rest of this section, we present these two uses.

LY

3.1.1 Example 1: Storing a Computed Value

Suppose that in Scene 2 of a story, a girl and a horse are positioned as seen in Figure 3-2.

- Chapter 3 Variables and Functions 67

FIGURE 3-2 Girl and horse: initial positions

Suppose our scene calls for the girl to move toward the horse and stop when she is
directly in front of it. We can send the girl the move () message to move her toward the
horse, but how far should we ask her to move? One way would be to use trial-and-error to
find a suitable value. But trial-and-error is tedious, especially when there is a better way.
The better way is to:

1. Define a variable to store the distance from the girl to the horse.

2. Ask the girl how far she is from the horse, and store her reply in the variable.

3. Use that variable in the move () message to get her to move the right distance.

To accomplish the first step, we just click the create new variable button we saw
in Figure 3-1. To get the information it needs to define the variable, Alice pops up a Create
New Local Variable dialog box in which we can enter the variable’s name, type, and
initial value.

A variable’s name should be a noun that describes the value it stores.

For example, this variable is storing the distance from the girl to the horse, so we
will name it distanceToHorse. Like method names, variable names always use lower-
case letters, capitalizing the first letter of words after the first word.

68 Section 3.1 Method Variables

A variable’s type describes the kind of value we intend to store in it. Alice provides
four basic types:

* Number, for storing numeric values (for example, -3, -1.5, 0, 1, 3.14159, and so on)

® Boolean, for storing logical (true or false) values

s oObject, for storing references to Alice objects (for example, troll, wizard, castle,
and so on)

s other, for storing things like Strings, Colors, Sounds, and other kinds of values

Since the distance from the girl to the horse is a numerical value, Number is the
appropriate type for this variable.

As its name suggests, the initial value is the value the variable will contain when
the method begins. We will usually use a value like O or 1, as shown in Figure 3-3.

FIGURE 3-3 The create New Local Variable dio]og box

When we click the oK button, Alice defines a new variable in the method, in the
space above the editing area, as shown in Figure 3-4.

Ty LS

i @ World.playScene?2]

B

4 publlc void playScene2 (} {

@ dlstah;er'ln'ol‘-lrdrs;;i;i; - 7 N cr;ate n;w vﬁrlaﬁle

o T p—t

~ T~ variable definition

: Number,

HGURE 3-4 The distanceToHorse voricbie

Next, we want to ask the girl how far she is from the horse, and set the value of this
variable to her response. In Alice, it is easiest to do these steps in reverse order.

Setting the value of a variable is done in a way similar to how we set the value of a
property back in Chapter 1: we drag its definition into the editing area, and Alice gener-
ates a menu of potential values, as shown in Figure 3-5.

Chapter 3 Variables and Functions 69

@ Waorld.playScene?

public void playScene2 () {

, erate novs parametr
ml distanceToH@ create new variable

P N
4 =Sdoin0r
[Do Nothing

5 value
World.playScene2.distanceToHorse++ 025
World.playScene2.distanceToHorse--

2.

expressions »

other...

FIGURE 3-5 Seiting a variable’s value (part 1)

If we wished to add 1 to distanceToHorse, we would choose
World.playScene2.distanceToHorse++ from the menu (++ is called the increment
operator). If we wanted to subtract 1 from its value, we would choose
World.playScene2.distanceToHorse-- (-- is called the decrement operator). Since
we want to set the variable’s value, we choose the set value choice.

The value to which we want to set distanceToHorse is the result of asking the girl
how far she is from the horse. Unfortunately, this value is not present in the menu. In this sit-
uation, we can choose any value from the menu to act as a placeholder for the function. (In
Figure 3-5, we are choosing 1 as the placeholder.) The result is the set () statement shown
in Figure 3-6.

@ World.playScene2/

PAE A]

public void playScene2 () {

Number /123 distanceToHorse = 1 - ; create new varlable

dolnOrder {
i distanceToHorse ~ .set({ value, 1 -); more...

FIGURE 3-6 Setting a variable’s value using a placeholder

With a set () statement in place, we are ready to ask the girl how far she is from the
horse. To do so, we make sure we have the girl selected in the object tree, and then click
the functions tab in the details area. “How far are you from the horse?” is a proximity
question, so we look in the proximity section of the functions. Since the girl is in front of

70 Sedion 3.1 Method Variables

the horse and we see a distanceInFrontOf () proximity function, we drag it into the
editing area to replace the 1 in the set () message, as shown in Figure 3-7.

&

distanceToHorse/= 1~ |; create new variable

prt{xlmlty

atlveGirt IsCloseTo(threshold -]

ativeGirl isFarFrom('thresholcf b

ativeGirl .distanceTo(object!)]
nativedirl ?.d[stanchpTheLefth(
ativeGirl }.dlstanéeToThenghtO

ativeGirl distanceAbove(obje

;glveGirl%.dlstanceBelow joé

distancelnFrontof{_obl*

FIGURE 3-7 Setting a variable’s value to a function’s answer

When we drag the function onto the placeholder (1), the box around the 1 turns
green, indicating we can drop it. Alice then asks us for the object whose distance we want
to compute, and displays a menu of the available options. When we select horse -> the
entire horse (see Figure 3-7), Alice replaces the placeholder 1 with the function, as
can be seen in Figure 3-8.

create new varlable

| ”ls;‘t-a"ncelnFrorifOf(horse ~)m;re

H I

FIGURE 3-8 Setting a variable’s value (part I1l)

You may be wondering why we used the distanceInFrontof () function instead
of the distanceTo() function. The reason is that the distanceTo() function returns
the distance from the center of one object to the center of the other object. If we

Chapter 3 Voriables and Functions 71

moved the girl that far, she and the horse would occupy the same space, which looks
really weird! (Try it and see.) By contrast, the other proximity methods all measure
from the outer edge of one object’s bounding box to the outer edge of the other
object’s bounding box.

Once we have a variable containing the distance from the girl to the front of the
horse, we can use it in the move () message. When we drag the move () message into the
editing area, we can specify that we want the girl to move forward the value of the vari-
able by selecting expressions -> distanceToHorse. Alice’s expressions menu usu-
ally contains a list of all the variables (and parameters, and functions we define) that are
available for use within the current method. Figure 3-9 illustrates this.

{ @ World.playS

cene2

e e o S e R R v
4 nativeGirl's detalls
| T o

public void playScene2 () {
Number IE} distanceToHorse = 1 ; create new variable

doinOrder {)
: distanceToHorse - .set(value, : nativeGlH - .distancelnFrontOf{ horse -) more... -); mors...

nativeGirl .turn{ direction , :Ir_ecﬂon
- natlveGirl roil{ direction’, 2 UP ’
nativeGlri .reslze{ amount DownN o
’ LEFT »
. nativeGirl .say(what); RIGHT »
nativeGirl .think(what); IRWAR amount
BACKWARD *| 12 meter

nativeGirl .playSound{ sou

1 meter -
i nativeGIrl.moveTo(asSeer| & meters
- nativeGlri .moveToward(ta [; *10 meters

nativeGirt . moveAwayFrom(

nativeGirl .orlentTo(asSeed [7 doinCrder “doToget lo' {forAlinOrder /forAllTogether :walt{ duration };

ta(lirl tue :print(text '. object); i

FIGURE 3-9 Using a variable’s value in a message {part 1)

Figure 3-10 shows the statement Alice generates when we select distanceToHorse.

1@ World.playScene2|

public void playScene2 () {
Number 23| distanceToHorse = 1 ; create new varlable

:v.ETdoInOrder{
{ | distanceToHorse - .set{ value, :nativeGirl = .distancelnFrontOf{ horse -)} more..” -); more...

- nativeGiri - .move(FORWARD , distanceToHorse meters =); more... -

FIGURE 3-10 Using a variable’s value in a message (part 1)

72 Section 3.1 Method Yoriables

When we play this method, we get the result shown in Figure 3-11.

FIGURE 3-11 The girl too close fo the horse

This looks a bit too close for comfort — the girl is invading the personal space of the
horse! We can easily remedy that by moving her slightly less than distanceToHorse. In the
move() statement, clicking the list arrow next to distanceToHorse reveals a
drop-down menu we can use to modify the distance the girl moves, as shown in
Figure 3-12.

create new variable

i }; more...~

FIGURE 3-12 Adjusting a value in a message

#

Chapter 3 Voriables and Functions 73

As can be seen in Figure 3-12, Alice's math menu choice provides the basic
arithmetic calculations of addition, subtraction, multiplication, and division. Selecting
distanceToHorse - 0.5 produces the statement shown in Figure 3-13.

Q World.playScer;eZ

2L & SRR
public void playScene2 (}{
I Number i3 distanceToHorse = 1 - ;

= dolnOrder {

. distanceToHorse .set{ value, ‘nativeGirl .distancelnFrontOf(horse)} more... }; more...
: nativeGirl - - move(FORWARD - | (distanceToHorse - 05) }; more...
#}

FIGURE 3-13 Decreasing how far she moves

Now, when we play the method, the girl stops a comfortable distance from the
horse, as shown in Figure 3-14.

FIGURE 3-14 Stopping a comfortable distance from the horse

Using functions and variables has a major advantage over trial-and-error: it yields
the right behavior even if we reposition the girl or the horse! If we had used trial-and-
error to find the exact distance to move the girl, and then later repositioned the girl or
horse, the value we had found using trial-and-error would no longer be correct, so we

74 Section 3.1 Method Vorigbles

would have to fix it (either with another round of trial-and-error, or by getting smart and
using a variable and a function).

Once you get used to using variables and functions, they often provide a much
better way to make a character move a distance relative to another object.

3.1.2 Example 2: Storing a User-Entered Value

Another common use of variables is to store values that the user enters, for later
use. To illustrate, suppose your geometry teacher gives you a list of right triangles’
leg-lengths, and tells you to calculate each triangle’s hypotenuse length using the
Pythagorean Theorem:

We could either get out our calculators and grind through the list, or we could
write an Alice program to help us. Which sounds like more fun? (Writing an Alice
program, of course!)

As always, we start with a user story. We might write something like this:

Scene: There is a girl on the screen. She says, “I can calculate hypotenuse-lengths in my
head!” Then she says, “Give me the lengths of the two edges of a right triangle...” A dia-
log box appears, prompting us for the first edge length. When we enter it, a second dialog
box appears, prompting us for the second edge length. When we enter it, the girl says,
“The hypotenuse-length is X" (Where X is the correct answer.) '

The nouns in our story include girl, hypotenuse-length, first edge length, second
edge length, and two dialog boxes. For the girl, we will use the skaterGirl from the
Alice Gallery. For the hypotenuse-length, first edge length, and second edge length, we
will create Number variables named hypotenuse, edgel, and edge2, respectively. For
the dialog boxes, Alice provides a function that will build and display dialog objects
for us (see below).

Since the scene has just one object (girl), we will create a skaterGirl object
method named computeHypotenuse() to animate her with the desired behavior.
Within this method, we declare the three Number variables, and then begin program-
ming the desired behavior. Using what we have seen so far, we can get to the point
shown in Figure 3-15:

Chapter 3 Variobles and Functions 75

ST R TETEs S T

é s;('aterGiri‘.;:' rﬁput H{/pbtenuse
public void computeHypotenuse () {

Number |23 hypotenuse = 1 ~ ; Number ‘iz edget =1 ; Number ‘izfedge2=1 ;
= dolnOrder {

skaterGirl .say(| can calculate hypotenuse lengths in my head!); duration=3 seconds fontSze=30 more...
- skaterGirl .say(Give me the lengths of two edges of arighttriangle - }; duration=3 seconds fontSize=30 more...

edgel .set{ value, 1); more...

FIGURE 3-15 Getting started

But how do we generate a dialog box to set the value of edgel? The trick is to look
in the Wworld’s functions! The World’s functions pane provides an entirely different set of
function-messages from those we can send to an object. If we scroll down a bit, we find
the Numberbialeg function that we can drag over to replace the 1 placeholder, as we
saw in Figure 3-7. When we drop it on the 1, Alice displays a menu of questions we can
have the dialog box ask, as shown in Figure 3-16.

; Number (i3 edge1 = 1~ ; Number :(2ledge2 =1 ;

skaterGirl .say(| can calculate hypofenuse fengths in my head| - }; duration=3 ¢

::: skaterGirl .say(Give me the lengths of two edges ofa right triangle - }; duration
; g -

.edgel - set(valu

}; more...-
question
Enter a Number:
Give me the lengths of two edges of a right triangle
| can calculate hypotenuse lengths in my head!

StringDialog(question
4= mouse
 Mouse.getDistanceFron

4 Mouse.getDistanceFron
= time

FIGURE 3-16 Dragging a dialog function

—ﬁ*

76 Section3.) Method Variables .

In this case, we want the dialog box to ask for the length of one edge of a right
triangle, so we choose other. .. Alice then lets us enter the prompt to be displayed,
as shown in Figure 3-17.

FIGURE 3-17 Cusfomizing a dialog box's prompt message

This yields the set () message shown at the bottom of Figure 3-18.

@ skaterGirl.computeHypotenuse i :
reate new parameter

; ; |create new variable

FIGURE 3-18 Seffing a variable fo a dialog box's result

Now, when the program flows through the set() message, it will send World
the NumberDialog() message, which will display a dialog box asking the user to
enter the first edge length. When the user enters a number in that dialog box, the
Numberbialog() function will return that number, which the set() method will
then use to set the value of edgel.

We can use a similar approach to get the value for edge2, and once we have the two
edge lengths, we are ready to compute the hypotenuse value. We get as far as shown in
Figure 3-19 before we hit a snag.

(hapter 3 Variables and Functions 77

4 9 skaterGirl.computeHypotenuse

public void computeHypotenuse () {

Number _E’]hypétenuse =1- : Number fizjedgel = 1~ ; Number fiisledge2 =1~ ; String :[i hypotString = default string ~ ; |create new variable

£ dolnOrder { 3
skaterGirl - .say(| can calculate hypotenuse lengths inmy head! - '); duration =3 seconds - fontSize=30 - more...~
skaterGirl - .say(Gl;la me the Ienéth: of two edges of"a ﬁdhttrlangle: . i; duration =3 sgcdnds - fontSize=30 - more...”

“edgel - .sef{ value, - thpeﬁ:iglpg(wesﬂcn-ﬁpg'e} the first edge length: - } more... -) more...-
edge2 - sef{ value, f.Ndrﬁb_érﬁ)lilég(ques:ﬂcrnv;Enter@he' gg;:ond ;dgg length: -~ } more:.:"‘-' }; more...

hypotenuse - ".sef{ value, 1~); more..."

FIGURE 3-19 How fo compute the hypotenuse

Looking back at the Pythagorean Theorem, we see that we need the square root
function. Like the dialog box function, square root is available in the World’s functions
pane, under the advanced math category. We thus drag and drop Math.sqrt () to replace
the placeholder 1 in the set() message. From there, we can use the list arrow, the
expressions menu choice, and the math menu choice several times to build the set ()
statement shown in Figure 3-20.

hypotenuse ~ : set{ value

FIGURE 3-20 Computing the hypotenuse

Now that we have the hypotenuse calculated, how do we get the skaterGirl to
say it? We can easily get her to say "The hypotenuse length is ", but how do we get
her to say the value of hypotenuse at the same time? The answer has to do with types. As
you know, the type of hypotenuse is Number. The type of the value we send with the
say() message must be a String. Resolving this dilemma takes several steps.

The first step is to declare a new variable that will contain the value of hypotenuse,
converted to a String. We'll call it hypotString, make its type String, and leave its initial
value as <None>. We can then set its value to a placeholder value, like any other variable.

" hypotenuse - _set(value, Math.sqrt((edgel~ * edgel-).~ .4 (edge2 - * edge2-) ")i)i ’); more...~

" hypotString .set(vaiue, default string - .); more...

FIGURE 3-21 Converting the hypotenuse to a string (part 1)

78 Section 3.1 Method Variables

The next step is to use this variable to store a String representation of the (Number)]
value of hypotenuse. To do this, we go back to the World's functions pane again, and '
under string operations we find a function named toString(). We drag this function
into the set () statement to replace its default string value. When we drop it, Alice
displays a menu from which we can choose expressions -> hypotenuse as the thing
that we convert to a String. The result is the statement in Figure 3-22.

FIGURE 3-22 Converting the hypotenuse to a string {part Il)

We now have a String version of the hypotenuse. The next step in the algorithm is
for the skaterGirl to say “The hypotenuse length is X” where X is hypotstring. To
make this happen, we need a way to combine "The hypotenuse is " with hypotString.
In programming, combining two strings a and b into a single string ab is called concatenating
the strings, and for String values, the + sign is called the concatenation operator. In a con-
catenation a + b, the order of a and b matters: "en" + "list" makes "enlist"”,but "list"
+ "en" makes "listen".

We can start by having skaterGirl say the first part of what we want her to say:

"The hypotenuse length is ". It doesn’t show up well in Figure 3-23, but we must
take care to leave a space after the word is, to separate it from the next part.

FIGURE 3-23 Converting the hypotenuse fo a string {part Ili)

To make her also say the second part, we make a final trip to the Wor1d’s functions pane,
from which we drag the other String function (a+b) onto "The hypotenuse length is "
in the set () statement. When we drop the a+b function onto "The hypotenuse length
is " in Figure 3-23, Alice takes the String that’s there ("The hypotenuse length is ")
as its a value. Alice then displays the menu we have seen before, from which we can select
expressions -> hypotString as the (a+b) function’s b value, as shown in Figure 3-24.

katerGlri - |.say(' The hypotenuse lengthis - |+ hypotString -

; duration =5 seconds - | fontSize =30~ {more...

FIGURE 3-24 Concatenating two strings

Chapter 3 Voribles and Functions 79

Since that is the last step, the method is done! The complete method is shown in Figure 3-25.

 Werd Ty it skaterGirl,computeHypotenuse .

public veld computeHypotenuse {){]
Number 13 hypotenuse = 1 ; Number :edgel =1 ; Number rivedge2=1 ; String * hypotString = default string ; |create new varlable

< dolnOrder {
skaterGirl .say({ | can calculate hypotenuss lengths inmy headl); duration =3 ceconds fontSizow30 more...

skatorGlri .say(Glve me the lengths of two edges of arighttriangle: }; duratfon =3 saconds fontSize=30 more...

sdgel .set{ value, NumberDialog(question s Enter the first edge length:) more... J; more...

edge2 .got{ value, NumberDlalog(question =Enter the second edge length:) more..,)i more...
nypotenuse .aet{ value, Mathasqt{ ((edgel % edaet) 4 (edge2 ¥edge2)))) mors..

hypotString set{ value, hypotenuse toStringd J; more...

say(The lengthis + hypotString); duration =8 saconds fontSize=30 more..,

FIGURE 3-25 The computeHypotenusae() method (finol version
P

We then send skaterGirl the computeHypotenuse() message in my_ first_
method () to finish the program.

To test our work, we enter commonly known values. Figure 3-26 shows the result
after we have entered edge lengths of 3 and 4 (the corresponding hypotenuse length is 5).

The hypotenuse length is 5.0

C

FIGURE 3-26 Testing computcHypotenuse ()

Variables thus provide a convenient way to store values for later use in a program.

80 Section 3.2 Parometers

3.2 Paramefers

A value that we pass to an object via a message is called an argument. While the word
may be new to you, you have actually been using arguments ever since Chapter 1. For
example, our very first program began with the code shown in Figure 3-27.

% aliceLiddell.neck.head *j.polntAt(camera~ | }; more...~

i aliceLiddell ~J .say(Oh, hello therel - j); duration =2 seconds = ifontSIéé: 30~ } mt;;;;:. -

FIGURE 3-27 Two statements from our first program

In the first statement, camera is an argument being passed to aliceLiddell.neck.head
— the value at which aliceLiddell.neck.head should point. Each of the statements
in Figure 3-27 has a single argument: camera (an Obj ect) in the first statement, and Oh,
hello there! (a String) in the second statement. Other methods we have seen require
us to pass multiple arguments, as shown in Figure 3-28.

'EZEHapplngbmgon.leﬂwlng-— l.roll(LEFT~ | 2 ravolutions = 1); more...~

1

épplngDragon.riéI:ui:wlng - }.roll(RlGﬁTr , 02 revblution;?); more::

FIGURE 3-28 The rol1() message requires two arguments

Here, we see that the roll() message requires two arguments: the direction the
object is to roll, and the amount it is to roll.

When you send an object a message accompanied by an argument, that argument
must be stored somewhere so that the receiving object can access it.

A parameter is a variable that stores an argument, so that the receiver of the message
can access it ‘

Thus, the pointat () and say() methods each have a single parameter, while the
roll() method has two parameters. There is no limit to the number of parameters a
method can have.

To make all of this a bit more concrete, let’s see some examples.

Chapter 3 Voriables and Functions 81

3.2.1 Example 1: Old MacDonald Had A Farm

Suppose we have a user story containing a scene in which a scarecrow is supposed
to sing the song “Old MacDonald,” one line at a time. Some of the lyrics to this
song are below:

Old MacDonald had a farm, E4-E--O. Old MacDonald had a farm, E--E-1O.

And on this farm he had a cow, E-E-1-O. And on this farm he had a duck, E4-E--O.

With @ moo-moo here, and a moo-moo there, With a quack-quack here, and a quack-quack there,
here a moo, there a moo, everywhere a moo-moo. here a quack, there a quack, everywhere a quack-quack.
Old MacDonald had a farm, E-1-E1-O. Old MacDonald had a farm, E-E1-O.

Old MacDonald had a farm, E1-E--O. Old MacDonald had a farm, EE-LO.

And on this farm he had a horse, E-LE--O. And on this farm he had a dog, E-+-E--O.
With a neigh-neigh here, and a neigh-neigh there, With a ruferuff here, and a ruffruff there,
here a neigh, there a neigh, everywhere a neigh-neigh. | here a ruff, there a ruff, everywhere a ruffruff.
Cld MacDonald had a farm, E4-E-1-O. Old MacDonald had a farm, ELE-LO.

Subsequent verses introduce other farm animals (for example, chicken, cat, pig,
etc.). For now, we will just have the character sing these four verses.

Clearly, we could use divide-and-conquer to have the scarecrow sing four verses; in
each verse we send the scarecrow five say() messages. For example, singVersel()
would contain statements like these:

scarecrow.say("0ld MacDonald had a farm, E-I-E-I-0.");
scarecrow.say("And on this farm he had a cow, E-I-E-I-0.");
scarecrow.say("With a moo-moo here and a moo-moo there,");
scarecrow.say("here a moo, there a moo, everywhere a moo-moo.");
scarecrow.say("0ld Macbonald had a farm, E-I-E-I-0.");

However, this approach has several disadvantages. One is that if later we want
to add a fifth verse, then we must write a new method, containing five more say()
messages, and add it to the program. With this approach, every new verse we want
the scarecrow to sing will require a new method containing five more statements.
This seems like a lot of repetitious work.

A related disadvantage of this approach is that each verse-method we write is identi-
cal, except for (1) the animal, and (2) the noise it makes.

Whenever you find yourself programming the same thing more than once, there is usually
a better way to write the program.

In this case, the better way is to write a single “generic” singVerse () method, to
which we can pass a given animal and its noise as arguments. That is, we want a message

like this:

scarecrow.singVerse("cow", "moo");

[y

82

Section 3.2 Parameters

to make the scarecrow sing the first verse; a message like this:

scarecrow.singVerse("horse", "neigh");

to make him sing the second verse, and so on.

The trick to making this happen is to build a method with a generic animal parame-
ter to store whatever animal we want to pass, and a generic noise parameter to store the
noise it makes. The statements of this method then contain the lyrics that are common
to each verse, but using the animal parameter in place of the specific cow, duck, horse, or
dog; and using the noise parameter in place of the specific moo, quack, neigh, or ruff.

Assuming we have created a world containing a scarecrow (from Alice’s Web Gallery)
and whatever other farm-related objects we desire, we can start by creating a new
scarecrow method named singVerse(). With this method open, we click the create
new parameter button we saw back in Figure 3-1. When clicked, this button generates
a2 Create New Parameter dialog box similar to the create New Local Variable dia-
log box we saw in Figure 3-3. As in that dialog box, we can specify the name of the
parameter and its type. When we click this dialog box’s OK button, it defines a new param-
eter with the given name and type between the method’s parentheses. In Figure 3-29, we
have used this button to create the animal and noise parameters.

1 public void singVerse (String; al; ise; :

create new varlable

FIGURE 3-29 Parameters for animal and noise

With the parameters defined, we can proceed to add statements to the method to
make the scarecrow sing a verse. Like a variable, a parameter’s name appears in the
expressions menu choice that appears when we drag and drop a statement into the
method. Figure 3-30 shows one way we might define the singVerse() method.

Chapter 3 Variables ond Functions 83

public void singVerse (Striing .{%/animal , String {%/noise) { create new parametet

String - firstLine = defauit string * ; String %/ H create new vartabl(

= doInQrder { .
firstLine - .set{ value, Old MacDonald had afarm, E4-E4-0.); more...

doubleNoise .sel{ value, - :noise " + - + noise); more...
" scarecrow - .say(firstLine -); duratfon =6 seconds - fontSize =30 - more...

scarecrow - .say(:_ Andonthis farmhe hada - 4 animal + ,E4E4-0, Y; duration =8 seconds - fontSize=30 - more...

_scarecrow .say(0) Witha - + doubleNoise ~ = 4 here,anda + doubleNoise - 4 there,”" .- }; duration=3seconds - fontSkze=30 1

“scarecrow - say(.-} (Herea: fnoise " +,therea + noise " ;4 ,everywhersa - .- 4 doubleNoise +.); duration =3 se

scarecrow - .say(firstline); duration =8 seconds - fontSize=30 - more..."

FIGURE 3-30 The singVerse() method

Recognizing that the first and last lines are the same, we defined a variable named
firstLine to store those lines, so that we need not write them twice. Also, seeing that a
verse uses the string noise-noise three times, we defined a variable named doubleNoise,
and defined its value as noise + "-" + noise, using the string concatenation operator
(+) we saw in the last section. In fact, we used the concatenation operator 14 times in
building this method, most often in the statements in which the scarecrow sings the 3rd
and 4t lines of the verse.

Given this method, we can now define a sing0ldMacDonald() method quite sim-
ply (Figure 3-31).

< @ scarecrow.singOldMacDonald
i public void singOldMacDonald (} {

" domorder{
scarecrow.singVerse [animal=cow - , noise=moo - });
gcarecrow.singVerse (animal=horse |, nofse=neigh };
scarecrow.singVerse (animal=duck , nolse=quack);

scarecrow.singVerse (animal=dog - , nolse=ruft -);

FIGURE 3-31 The singOldMacDonald() method

84 Section 3.2 Parameters

Figure 3-32 presents the program running, partway through its third verse.

Here a quack, there a quack, everywhere

FIGURE 3-32 Testing sing0ldMacDonald()

If we should subsequently decide to add a new verse, doing so is as easy as sending the
scarecrow another singVerse () message, with the desired animal and noise arguments.

3.2.2 Example 2: Jumping Fish!

Suppose we have a user story in which a fish jumps out of the water, tracing a graceful arc
through the air before re-entering the water. If we examine the various fish classes in the
Alice Gallery, none of them offers a jump () method that solves the problem. Choosing one
that will contrast with the water, we will define a jump () method for the Pinkminnow class.

If we think about what kinds of arguments we might want to pass to a jump() mes-
sage, one possibility is the distance we want the fish to jump. Another possibility would
be the height we want it to jump. (These are very different behaviors, as indicated by
there being separate high jump and long jumyp events in track and field.) In this section,
we will have the fish do the equivalent of the long jump, and pass the distance we want it
to jump.

Chapter 3 Varibles and Functions 85

If we think through the behavior this method should provide, we might sketch it as
the sequence of steps shown in Figure 3-33.

FIGURE 3-33 Sketching a fish’s jumping behavior

We can write out these steps as an algorithm as follows:

I 1 fish swims forward a starting distance (to get its speed up) .

2 fish angles upward

3 fish moves upward the height and half the distance, angling upward

4 fish moves downward the height and forward half the distance, angling downward
5 fish angles upward (levels off)

6 fish swims forward a stopping distance (coasting to a stop)

If we consider how an animal jumps, when an animal jumps a short distance, it
doesn’t spring very high; but if it jumps a longer distance, it springs higher. The height
and distance of an animal’s jump are thus related. For the sake of simplicity, we will
approximate the height as 1/3 of the distance. (If this proves too simplistic, we can
always change it.) Similarly, if a fish is to jump farther, it may need a longer starting dis-
tance to get its speed up, and the distance it glides before it stops will be greater. For sim-
plicity’s sake, we will assume that the starting and stopping distances are 1/4 of the
distance to be jumped.

Using our algorithm and our sketch, we might identify these objects: fish, height,
distance, half the distance, angle, starting distance, and stopping distance. We have
already selected the Pinkminnow class for the fish. Since we intend to pass the distance
to be jumped as an argument, and such a value is numeric, we will create a Number
parameter to store this value using the create new parameter button. The remaining
objects are all numeric values, so we will define a Number variable for each of them,
using the create new variable button we saw in Figure 3-1. We will use the names
height, hal£Dist, and angle for three of these objects. If we assume that the starting

86 Section 3.2 Parameters

and stopping distances are the same, we can use one variable for both, which we will
name startStopDist, as shown in Figure 3-34.

create new variabl

create new parameter |4

FIGURE 3-34 The jump() parameter and variables \

Given our algorithm and these variables, building the method consists of setting their
values appropriately, and then dragging the right statements into the method to elicit the
behavior required by our algorithm. Figure 3-35 shows the completed definition.

S startStopDist= 1~ |; Numbe

7| move(FORWARD - J, halfDIstmeters

Ie =BEGIN_AND_L END_ABRUP

startStolest meters ~ |), 5

FIGURE 3-35 The jump() method (complete) |

thopter 3 Voriables and Functions 87

We can see in Figure 3-35 that each variable’s value is accessed multiple times. One
of the benefits of using variables this way is that if we later decide to change a value (for
example the height of the jump, or its angle), we only have to change it in one place,
instead of in several places. This can be a big time-saver when you are using trial-and-
errot to find just the right value.

To test our program, we send pinkminnow the jump () message. To test it thoroughly,
we use a variety of argument values (for example, 0.25, 0.3, 1, 2, ...), to check that its
behavior is appropriate in each case. Figure 3-36 shows a test using one of these values.

@ World.my first method | .
1 public void my_first_method () {

pinkminnow.jump { distance=1);

festing the §ump () method

Figure 3-37 is a montage of snapshots, showing the behavior produced by the
jump () method.

FIGURE 3-37 A jumping fish

Parameters are thus variables through which we can pass arguments to a method.
By passing different arguments to the same method, that method can produce different
(related) behaviors. For example, the singverse () method allows the scarecrow to sing
different verses of the same song, depending on what animal and noise values we pass it.
Similarly, the jump () method makes the pinkminnow jump different distances, depending
on what distance we pass it.

88 Section 3.3 Property Variables

The key to using parameters well is to anticipate that you will want to pass different
values to the method as arguments, and then create a parameter to store such values. A
well-written method with parameters is like a stone that (figuratively speaking) lets you

kill multiple birds.

3.3 Property Variables

Now that we have seen method variables and parameters, it is time to take a brief look at
Alice’s third kind of variable: object variables, which are also known as instance
variables or properties. Whereas method variables and parameters are defined within a
method, an object variable is defined within an object. More precisely, an object variable
is defined within the properties pane of an object’s details area.

An object variable allows an object to remember one of its properties. Each object
has its own variable for the property, in which it can store a value distinct from any
other object.

To clarify this, let’s look at a concrete example. Suppose a user story calls for twin
wizards named Jim and Tim, and each wizard needs to know his own name. One way to
make this happen is to add a wizard to our world and define within it an object variable
whose name is myName, whose type is String, and whose value is "Jim". If we then
make a copy of the wizard, the new wizard will have its own myName variable, whose
value we can change to "Tim",

To define an object variable in the wizard, we click on wizard in the object tree,
click the properties tab in the details area, and then click the create new variable but-
ton we see there!, as shown in Figure 3-38.

@ World.my first method
public void my_first_method () {

e —
create new variable
S——

FIGURE 3-38 The properties pane’s create new variable button

l. Just below the ereate new variable button is a capture pose button. When pressed, this button saves the
object’s current pose (the positions+orientations of its subparts) in a new property variable of type Pose. If you
want to pose your character manually before running your program, this button lets you save such poses. You can
use the setPose () method within your program to change an object’s pose to a saved pose. (The getCurrentPose ()
function can be used to retrieve an object’s current pose while your program is running.)

(hapter 3 Voriables ond Functions 89

Clicking this button causes the create new variable dialog box to appear, which is
almost identical to the Create New Local Variable dialog box we saw back in Figure 3-3.
In it, we enter myName for the name, select 0ther ~> String as its type, and enter Jim for its
value. When we click the dialog box’s 0k button, Alice creates a new String variable named

“myName whose value is Jim in the wizard’s properties pane, as shown in Figure 3-39. I

world

“pE® camera
QR light
@ ground

E, public void my_first_method () {

create new variable

FIGURE 3-39 A new property variable

To make the wizard’s twin, we can use the copy button (the rightmost control in the
Add Objects window), as was covered in the Alice Tutorial. Copying the wizard this way
gives us two wizards named Jim, so we close the Add Objects window, click on the sec-
ond wizard in the object tree, click the properties tab in the details area, and there change
the value of the new wizard’s myName property from Jim to Tim. See Figure 3-40.

wizard2's details
broperties £l
%) myName = Tim

FIGURE 3-40 Twin wizards

A program can now access each wizard’s name, as shown in Figure 3-41.

90

Section 3.3 Property Voriables

{ Worl.my ﬁr method
public void my_first_method ()} {

= doTogether {

nameIs - |4 wizard.myName - ;

|); duration =2 seconds - |fontSize =30 = | more... -

wizard2 - é.say(My nameis ~ i+ wizard2 myName - |

FIGURE 3-41 Accessing property variables

When we click Alice’s P1lay button, we see that each wizard “knows” his own name,
as shown in Figure 3-42.

My name is Jim

FIGURE 3-42 The twin wizards introduce themselves

A property variable thus provides a place for us to store an attribute of an object, such
as its name, its size, its weight, and anything else we want an object to know about itself.

As we have seen, each Alice object has a number of predefined property variables.
These variables store the object’s color (essentially a filter through which we see the
object), its opacity (what percentage of light the object reflects), its vehicle (what

Chapter 3 Voriables and Functions 91

3.4

can move this object?), its skinTexture (the graphical appearance of the object), its
fillingStyle (how much of the object gets drawn), its pointofview (the object’s
position and orientation), and its isShowing property (whether or not the object is vis-
ible). If you have not done so already, take the time to experiment with each of these
properties, to get a feel for what role each plays.

In the next section of this chapter, we will take a closer look at the vehicle
property.

Alice Tip: Using the Vehicle Property

In some user stories, it may be desirable to synchronize the movements of two objects,
so that when one of the objects moves, the other moves with it. To illustrate, let us return
to the example from Section 3.1.1, in which Scene 2 had a girl approaching a horse. Sup-
pose that Scene 4 calls for her to ride the horse across the screen. We might set the
scene as shown in Figure 3-43.

FIGURE 3-43 The girl on the horse

the screen (Figure 3-44).

With the girl on the horse, we can use 2 move () message to move the horse across

92 Section 3.4 Alice Tip: Using the Vehicle Property

orl.playScene4

public void playScene4 () {

“EldolnOrder {
horse - |.move(FORWARD - |, §meters - |); more...~

FIGURE 3-44 Moving the horse across the screen

However, as shown in Figure 3-45; when we do so, the horse moves, leaving the girl
hanging suspended in mid-air!

FIGURE 3-45 Moving the horse leaves the girl hanging’

We could solve this problem using a doTogether block, in which we make the girl
and the horse move together. But doing so would force us to write twice as many state-
ments anytime we wanted her to ride the horse, and the additional statements to move
the girl will be virtually identical to those we are using to move the horse. It would be
much better if we could somehow make the girl “ride” the horse, so that if the horse
moves, the girl moves with it.

Chapter 3 Variables and Functions 93

The way to achieve this better solution is by using the vehicle property. As its
name implies, an object’s vehicle is the thing on which it “rides,” which is by default,
the world. If we want the girl to ride the horse, we need to change her vehicle property.
This can be done by setting her vehicle property (using the approach we saw back in
Section 1.5.1) at the beginning of the scene, as shown in Figure 3-46.

’[O world.playScene4 |

: public void playScene4 () {

= dolnOrder {
nativeGirl .set{ vehicle, horse }; more...
horse .move(FORWARD | Smeters); more...

FIGURE 3-46 Changing the girl’s vehicle proper
ging g prop

As soon as we have made this change, playing the scene causes the girl to “ride” the
horse across the screen, as shown in Figure 3-47.

94 Section 3.5 Functions

By setting the vehicle of the girl to the horse, any move () messages we send to the
horse will cause her to move as well, effectively synchronizing her movements with those
of the horse.

Note that if a subsequent scene calls for the girl and the horse to move indepen-
dently, we will need to reset her vehicle to be the Wworld. If we neglect to do this, then
move () messages we send to the horse will make her move too, since their movements
will still be synchronized.

3.5 Functions

We have seen how to use a function to send an object a message in order to get information
from it. Suppose we wanted to be able to get information from an object, but there was no
predefined function providing that information? In such circumstances, we can define our
own function.

3.5.1 Example: Retrieving an Attribute From an Object

Let us return to the twin wizards we met in Section 3.3. Suppose that in addition to
their names, the wizards have titles that, together with their names, they use on formal
occasions. For example, suppose that the wizard Jim goes by the title The Enchanter,
while the wizard Tim goes by the title The Magus. (Yes, these sound pretentious to me,
too.) It should be evident that we can use the same approach we used in Section 3.3 to
define a second property variable for each of the wizards to store his title. We will name
this property variable myTitle, and define it to be of type String. Once we have .
defined this property, we can set its value to the appropriate value in each of the wizards,
as shown in Figure 3-48.

n;yTitle}= The Enchanter -

create new variable

FIGURE 3-48 The wizards' myTritle properties

Now suppose that, at times, we need to access a wizard’s name, at other times we
need to access a wizard’s title, and at other times we need to access a wizard’s full name
(that is, title plus name). In the first case, we can retrieve the wizard’s name using the
myName property. In the second case, we can retrieve the wizard’s title using the myTitle
property. But how can we access the wizard’s full name?

Chopter 3 Variables and Functions 95

One approach would be to concatenate myTitle and myName with a space in
between:

wizard.say("I am " + myTitle + " " + myName);

This approach is okay, so long as we don’t have to access the full name very often. If
we have to access it frequently, it can get tiresome to have to repeatedly rebuild the wiz-
ard’s full name. In such a situation, we can define a function that, when sent to a wizard,
produces his full name as its value. To do so, we select the wizard in the object tree, click
the functions tab in the details area, and then click the create new function button, as
shown in Figure 3-49.

FIGURE 3-49 The create new function button

Alice then displays a New Function dialog box in which we can enter the name of
the function and select the type of value it should produce. We will call the function
getFullName, and the value it produces is a String, as shown in Figure 3-50.

4 REE %
Name: [getFulName

Type: O Number
-~ O Boolean
C Object

@ Other.. [string :]
S
[_or][cancel |

FIGURE 3-50 The New Function dia'og box

When we click the ok button, Alice adds the new function to the wizard's functions
in the details area and opens this function in the editing area, as shown in Figure 3-51.

96 Section 3.5 Fundions

4 wizard's details
= —

) wizard.getFullName

§ public String getFullName () {
'

(Do Nothing
i return default string ~ f;

FIGURE 3-51 An “empty” string-returning function

Unlike an Alice method (which produces no value), a function produces a value. The
value the function produces is whatever value appears in the function’s return statement,
whose form is:

return Value ;.

When Alice performs this statement, the function produces value, sending it back
to the place from which the function-message was sent. Note that when Alice defines an
“empty” function, it supplies the return statement with a default value appropriate for
the function’s type.

Figure 3-52 shows one way we could define the function.

wizard.getFullName

public String getFullName {} { create new parametorl ‘
j] fuilName) = default string = I ; create new variable |3

e I]
& fullName < |.set{ value i ; < |+ wizard. myName :J{— %

< retum fullName - |;

FIGURE 3-52 The getFullName () function (version 1)

This approach uses a local variable named fullName to store the computation of
concatenating the wizard’s title, a space, and the wizard’s name, and then returns the
value of £ullName. Alternatively, we can eliminate the local variable and just return the

Chapter 3 Variables and Functions 97

value produced by the concatenation operators. Figure 3-53 uses this approach to define
getFullName () for wizard2.

wizd2.etFulIe

public String getFullName {) {
,create new vzriablel
(Do Nothing

FIGURE 3-53 The getFullname () function (version 2)

This version is equivalent to that in Figure 3-52, but it requires no local variable.
Now, we can use these functions in a program like that shown in Figure 3-54.

@ World.my first method |

public void my_first_method () {
create new variable

SidoTogether{

- {

=+); duration =2 seconds - ' fontSize

); duration =2 seconds — ‘fontSize =30 -

FIGURE 3-54 The wizards introduce themselves

The behavior these functions produce can be seen in Figure 3-55.

98 Section 3.5 Functions

My name is The Enchanter Jim . . My name is The Magus Tim

FIGURE 3-55 The wizards introducing themselves

3.5.2 Functions With Parameters

Like methods, functions can have parameters to store arguments passed by the sender of
the message. The arguments can then be accessed through the parameters. To illustrate,
recall that in Section 3.1.2, we built a world in which skaterGirl could compute
hypotenuse-lengths in her head. The method we wrote there inputs values for the two
leg lengths, computes the hypotenuse, and then outputs the result. There might be situ-
ations where we just want to calculate the numerical hypotenuse-length, without the
input or output:

hypotenuse.set(value, skaterGirl.calculateHypotenuse(3, 4));

To define such a function, we make sure skaterGirl is selected in the object tree,
click the functions tab in the details area, and then click the create new function button
as before. When the New Function dialog box appears, we enter its name (calculate-
Hypotenuse), but this time we select Number as the type of value it produces, as shown
in Figure 3-56.

Name: calculateHypotenuse

Type: & Number
- Boolean
: Object
< Other... [+

[makea
ENEE

When we click the ok button, Alice adds calculateHypotenuse to skaterGirl's
functions in the details area, and opens the new function in the editing area, as shown in

Figure 3-57.

Q. worid.my first mgtod

*skaterGirl.calculateHypotenuse
public Number calculateHypotenuse () {

create new variable|[i

| skaterGirl's details
‘fpropedies. Imemaqs I!uncﬂnns
1 calculateHypotenuse

|l create new function

f'»' proximity
skaterGiri .isCloseTo(threshol

Do Nothing

Creturn 1 ;.

ohy rramiber-relurning

To store whatever arguments the sender of this message passes for the two leg
lengths, we need two parameters, which we can make using the function’s create new
parameter button. This displays a dialog box like the one shown in Figure 3-3, in which
we can enter a parameter’s name and its type. Doing this for each of the two parameters
gives us the function shown in Figure 3-58.

& skaterGirl.calculateHypotenu;]

public Number calculateHypotenuse (Number #3ilegl , Number 23jeg2) {
create new variable

f O‘Wond,myﬂ;r’sthmﬁud‘

4

H
H
H
1
g
g
i

Do Nothing

return 1

i

100 Section 3.5 Functions

To finish the function, we add the necessary operations to make it compute the
hypotenuse length using its parameters. Figure 3-59 shows one way to do so.

hypot - j_‘ .set{ value, ;

iretum hypot<i;

FIGURE 3-59 Calculating the hypotenuse

Given this function, we can now send skaterGirl the calculateHypotenuse()
message, and pass it arguments for the leg lengths. Figure 3-60 shows a revised version
of Figure 3-25.

@ skaterGirl.computeHypotenuse

FIGURE 3-60 Sending a function-message

When this program is performed, it prompts the user to enter the lengths of the two tri-
angle legs, and then skaterGirl “says” the corresponding hypotenuse length. For example,
if the user enters 3 and 4 for the leg lengths, the program behaves as shown in Figure 3-61.

Chapter 3 Variables and Functions 101

3.6

The hypotenuse length is 5.0

FIGURE 3-61

Testing the function

Functions are thus much like methods. We can create parameters and local vari-
ables within each of them, and perform just about any computation we can envision. The
difference between the two is that a function-message returns a value to its sender, while
a method-message does not. Because of this difference, a function-message must be sent
from a place where a value can appear, such within a set() statement. By contrast, a
method-message can only be sent from a place where a statement can appear.

Being able to define messages — both method and function — is central to object-
based programming. In the chapters to come, we will see many more examples of each.

Chapter Summary

0 Method variables let us store computed and user-entered values for later use.

U Parameters let us store and access arguments passed by the sender of a message.

L} Properties (object variables) let us store and retrieve an object’s attributes.

U Alice’s vehicle property lets us synchronize the movements of two objects.

0 A function lets us send a message to an object, and get a value in response.

3.6.1 Key Terms

argument
concatenation
define a variable
function

initial value
local variable
method variable
object variable
parameter

placeholder
property variable
return statement

synchronized movements

variable
variable name
variable type
vehicle

world functions

Bt

102 Section 3.6 Chapter Summary

Programming Projects

3.1

3.2

3.3

3.4

3.5

3.6

Following the approach used in Section 3.1.1, build a scene containing two people
who walk toward each other from opposite sides of the screen. When they meet,
they should turn and walk off together toward a building, and enter the building
when they get there.

Using the horse we used in Section 3.4, build a gallop () method for the horse that
makes its legs move realistically through the motions for one stride of a gallop. Then
modify the playScene4 () method so that the horse gallops across the screen. (For
now, you may send the gallop() message multiple times.)

Using the heBuilder or sheBuilder, build a person. For your person, define an
object method named walkInSquare() that has a parameter named edgeLength.
When walkInSquare(dist) is sent to your person, he or she should walk in a
square with edges that are each dist meters long. Make certain your person begins
and ends at the same spot. When the person is done, have the person say the area
and perimeter of the square.

Using the ideas in this chapter, build a world containing a person who can calculate
Einstein’s formula e = m*c? in his or her head, where the user enters the m value
(mass, in kilograms), and c is the speed of light (299,792,458 meters per second).
Define descriptive variables for each quantity, and use the World function pow() to
compute c2.

Choose a hopping animal from the Alice Gallery (for example, a frog, a bunny, etc.). -
Write a hop () method that makes it hop in a realistic fashion, with a parameter that
lets the sender of the message specify how far the animal should hop. Using your
hop () method, have your animal hop around a building in four hops.

The Farmer in the Dell is an old folk song with the lyrics below. Create an Alice pro-
gram containing a character who sings this song. Use a singVerse() method,
parameters, and variables to write your program efficiently.

The farmer in the dell.
The farmer in the dell.
Heigh-ho, the derry-o.
The farmer in the dell.

The farmer takes a wife.
The farmer takes a wife.
Heigh-ho, the derry-oh.

The farmer takes a wife.

The wife takes a child.
The wife takes a child.

The wife takes a child.

Heigh-ho, the derry-oh.

The child takes a nurse.
The child takes a nurse.
Heigh-ho, the derry-oh.
The child takes a nurse.

The nurse takes a cow.
The nurse takes a cow.

The nurse takes a cow.

Heigh-ho, the derry-oh.

The cow tfakes a dog.
The cow takes a dog.
Heigh-ho, the derry-oh.
The cow lakes a dog.

Chapter 3 Voriables ond Functions 103

The cat takes a rat.
The cat takes a rat.
Heigh-ho, the derry-oh.
The cat takes a rat.

The dog takes a cat.
The dog takes a cat.
Heigh-ho, the derry-oh.
The dog takes a cat.

The cheese stands alone.
The cheese stands alone.
Heigh-ho, the derry-oh.

The cheese stands alone.

The rat takes the cheese.
The rat takes the cheese.
Heigh-ho, the derry-oh.

The rat takes the cheese.

3.7 Using the heBuilder or sheBuilder (or any of the other persons in the Alice Gal-

3.8

3.9

3.10

lery with enough detail), build male and female persons and add them to your world.
Using your persons, build a program in which your people dance the waltz (or a sim-
ilar dance in which the partners’ movements are synchronized). Have your world
play music while your people dance.

Build a world in which two knights on horseback joust, using the techniques from
this chapter.

In Section 2.4, we developed Scene 2 of a program, in which a wizard confronts
three trolls. Write a wizard method castChangesizespell (obj, newSize), that
takes an object obj and a number newsize as arguments. The method should cause
the wizard to turn towards obj, raise his arms, say a magic word or phrase, and then
lower his arms. The method should resize obj the amount specified by newsize,
and then make certain obj is standing on the ground. Create a scene 3 in which the
wizard uses the castChangeSizeSpell() message to defeat the trolls by shrinking
most of them to 1/10 their original size.

Alice provides the Pose type, which can be used to store the position of each of an
object’s subparts. Under the properties pane, the capture pose button allows you to
save an object’s current Pose in a property variable before the program is run. The
function named getCurrentPose() can be used (as the value of a set () message)
to save an object’s pose in a Pose variable as the program is running. The setPose ()
method can be used to set an object’s pose to a pose stored in a Pose variable. Rewrite
the march () method we wrote in Section 2.2.2. Discard the moveLeftLegForward ()
and moveRightLegForward () methods we used, using three Pose variables instead.

Conﬂv//ing complexity is the essence of computer programmin g

BRIAN KERNIGHAN

When Yyou get to the fork in the road, take ir.

YoGi BERRA |

:
[fyou build it, he will come. !

THE VOICE (JAMES EARL JONES), IN FIELD OF DREAMS

|
17 hile you're at it, why don t you give me a nice paper cut and pour some lemon juice on it?)

MIRACLE MAX (BILLY CRYSTAL), IN THE PRINCESS BRIDE

Objectives

Upon completion of this chapter, you will be able to:

3 Use the Boolean type and its basic operations

“J Use the if statement to perform some statements while skipping others

2 Use the for and while statements to perform (other) statements more than once
' Use Boolean variables and functions to control 1£ and while statements

Use th wait message to tem)()l'ill‘i]\’ sus)cnd yrogram excecution
Ll B o

106 Section 4.1 The Boolean Type

4.1

In Chapter 1, we saw that the flow of a program is the sequence of steps the pro-
gram follows in performing a story. From the perspective of an Alice program, we can
think of a flow as the sequence of statements that are performed when we click the pPlay
button.

In the preceding chapters, the programs we have written have mostly used the doInOrder
statement, which produces a sequential execution. However, we sometimes used a doTogether
statement, which produces a parallel execution. If we consider a group of N statements within a
doInOrder statement compared to a doTogether statement, we can visualize the difference in
behavior of these two statements in a flow diagram like the one shown in Figure 4-1.

doInOrder doTogether
Statementl %\5
+ statement; statement, o statementy
statement,
v
statementy

v

FIGURE 4-1 The flows produced by the dornorder and doTogether statements

The doInorder and doTogether are thus flow control statements, because their
effect is to control the flow of the program through the statements within them. Com-
puter scientists often describe flow control statements as control structures.

In this chapter, we will examine several of Alice’s flow control statements, including
the following:

® the if statement, which directs the flow through one group of statements and away
from another group of statements

® the for statement, which directs the flow through a group of statements a fixed
number of times

® the while statement, which directs the flow through a group of statements an arbi-
trary number of times

Before we examine these statements, let's briefly look at a related topic: the
Boolean type.

The Boolean Type

You may recall from Chapter 3 that Boolean is one of Alice’s basic types (for defining
variables). The Boolean type is named after George Boole, a 19t century English
mathematician who studied true/false values and the kinds of operations that can be
used with them.

1 Flow Control 107

Whereas a Number variable can have any of millions of (numeric) values, and an
Object variable can refer to any Alice object, a Boolean variable can have either of just
two values: true or false. At first, this may seem rather]imiting: what good is a type
that only provides two values? As we shall see, the Boolean type is extremely useful when
we want the program to make decisions. Decision-making depends on current circum-
stances or conditions, so a piece of a program that produces a true or false value is
called a boolean expression or condition.

4.1.1 Boolean Functions

The functions pane of Alice’s details area contains questions we can ask an object. When
the answer to a question is true or false, the function is a condition. Many of the ques-
tions we can ask an object produce a Boolean value for their answer, including those
shown in Figure 4-2.

5 -

obj.isCloseTo(dist, obj2 true, if obj2 is within dist meters of obj7;

false, otherwise.

obj.isFarFrom(dist, obj2) | true, if obj2is ot least dist meters away from ob3;

false, otherwise.

obj.isSmallerThan(ob3j2) true, if obj2’s volume exceeds that of obj;

false, otherwise.

obj.isLargerThan (obj2) true, if obj's volume exceeds that of ob72;

false, otherwise.

obj.isNarrowerThan (obj2) true, if obj2's width exceeds that of obj;

false, otherwise.

obj.isWiderThan (obj2) true, if obj's width exceeds that of ob72;

false, otherwise.

obj.isShorterThan (obj2) true, if obj2’s height exceeds that of ob7;

false, otherwise.

obj.isTallerThan(ob3j2) true, if obj's height exceeds that of ob72;

false, otherwise.

. PN r .
o d-7 Booleon tunctions

continued

108 Section 4.1 The Boolean Type

obj.isToTheLeftOf (obj2) true, if obj’s position is beyond obj2's left edge;

false, otherwise.

obj.isToTheRightOf (obj2) | true, if obj's position is beyond ob3j2's right edge;

false, otherwise.

obj.isAbove(obj2) true, if obj’s position is above ob72's top edge;

false, otherwise.

obj.isBelow(obj2) true, if obj’s position is below obj2’s bottom edge;

false, otherwise.

obj.isInFrontOf (obj2) true, if obj’s posifion is before ob72's front edge;

false, otherwise.

obj.isBehind(obj2) true, if obj’s position is beyond ob3j2's rear edge;

false, otherwise.

obj.isToTheLeftOf (obj2) true, if obj’s position is beyond ob72's left edge;

false, otherwise.

FIGURE 4-2 Boolean functions (continued)

Note that most of these functions refer to an object’s bounding box. For example,
the function obj.isBehind (ob3j2) uses the rear edge of obj2’s bounding box.

These functions can be used with an if or while statement (see below) to make a
decision or otherwise control an object’s behavior.

412 Boolean Varihles

Another kind of condition is the Boolean variable or parameter. Boolean variables,
parameters, or properties can be created by clicking the appropriate create new variable
(or parameter) button, and then specifying Boolean as the type of the new variable (or
parameter). Such variables can be used to store true or false values until they are
needed, and can serve as a condition in an if or while statement, which we
describe below.

4.1.3 Relational Operators

Another kind of condition is produced by an operator that computes a true or false
value. The six most common operators that produce Boolean values are called the
relational operators, and they are shown in Figure 4-3.

Chapter 4 Fow Control 109

true, if vall and vai2 have the
same value;

equality

false, otherwise.

vall != val2 inequality true, if vall and vai2 have differ
ent values;

false, otherwise.

vall < val2 less-than true, if val1is less than vaiz;

false, otherwise.

vall <= val2 less-than-orequal true, if val1 is less than or equal
to valz;

false, otherwise.

vall > val2 greater-than true, if vai1 is greater than vai1z;

false, otherwise.

vall >= val2 greater-than-or-equal true, if val1 is greater than or
equal to va1z;

false, otherwise.

FIGURE 4-3 The relational operators

In Alice, the six relational operators are located in the functions pane of the world’s
details area. These are most often used to compare Number values. For example, suppose
a person is to receive overtime pay if he or she works 40 hours or more in a week. If
hoursWorked is a Number variable in which a person’s weekly working hours are stored,
then the condition

hoursWorked > 40

will produce true if the person should receive overtime pay, and f£alse if he or she
should not. Relational operators compare two values and produce an appropriate true or
false value.

Beyond numeric values, the equality (==) and inequality (!=) operators can be used to
compare String, Object, and Other values. We will see an example of this in Section 4.2.

414 Boolean Operators

The final three conditional operators are used to combine or modify relational opera-
tions. These are called the boolean operators, and they are shown in Figure 4-4.

110 Section 4.2 The if Statement

4.2

vall && val2 AND true, if val1l and val2 are
both true;

false, otherwise.

vall || val2 OR true, if either vali or val2 is true;

false, otherwise.

tval NOT : true, if valis false;

false, if valis true.

FIGURE 4-4 The boolean operators

Like the relational operators, Alice provides the boolean operators in the functions pane of
the Wor1d’s details area. To illustrate their use, suppose we want to know if a person is a teen-
ager, and their age is stored in a Number variable named age. Then the condition

age > 12 && age < 20

will produce the value true if the person is a teenager; otherwise it will produce the
value false. Similarly, suppose that a valid test score is in the range 0 to 100, and we
want to guard against data-entry mistakes. If the score is in a Number variable named
testScore, then we can decide if it is invalid with the condition

testScore < 0 || testScore > 100
since the condition will produce true if either testScore < 0 or testScore >
100 is true, but will produce false if neither of them is true.

Now that we have seen the various ways to build a condition, let’s see how we can
make use of them to control the flow of a program.

The i £ Statement

4.2.1 Introducing Selective Flow Control

Suppose we have a user story in which the following scene occurs:

Scene 3: A princess meets a mute dragon, and says “Hello.” The dragon just looks at her.
She asks it, “Can you understand me?” The dragon shakes its head up and down to indi-
cate yes. She says, “Can you speak?” The dragon shakes its head sideways to indicate
no. She says, “Can you only answer yes or no questions?” The dragon shakes its head yes.
She says, “Are you a tame dragon?” The dragon shakes its head no.

Chapter 4 Flow Control 171

The co-star of the scene is a mute dragon, who answers yes-or-no questions by shak-
ing his head up and down for yes, and shaking it sideways for no. We could write two sep-
arate dragon methods, one named shakeHeadYes(), and another named
shakeHeadNo (). Instead, let’s "kill two birds with one stone” and write one shakeHead ()
method providing both behaviors.

As we saw in Chapter 3, the key to making one method do the work of two (or more)
is to use a parameter to produce the different behaviors. In this case, we will pass the
argument yes when we want the dragon to shake its head up and down, and pass the
argument no when we want it to shake its head sideways. To store this argument, we will
need a parameter whose type is String. For lack of a better name, we will name the
parameter yesOrNo.

If we write out the behavior this method should produce, we might write the following:

Parameter: yesOrNo, a String.
If yesOrNo is equal to “yes”, the dragon shakes his head up and down;

Otherwise, the dragon shakes his head sideways.

The key idea here is that if the parameter has one value, we want one thing to hap-
pen; otherwise, we want something else to happen. That if is the magic word. Any time
we use the word if to describe a desired behavior, we can use Alice’s if statement to pro-
duce that behavior.

To build this method in Alice, we might start by opening a world, adding a
playScene3 () method to the world, adding a dragon to the world; positioning the cam-
era so that we can see the dragon’s head clearly; selecting dragon in the object tree; cre-
ating a new method named shakeHead(); and then within this method, creating a new
parameter named yesOrNo, whose type is String. The result is shown in Figure 4-5.

sears

! 0 dragoh.shakeHeéd

"vc| yesOrNo) {

; public void shakeHead (String

[Do Nothing

FIGURE 4-5 The empty shakeHead () method

Looking at the algorithm for this method, we see the magic word if. There is a con-
trol named if at the bottom of Alice's editing area, so we drag it into the method. When
we dr()p it, Alice pr()duces a condition menu, with the choices true or false, as shown
in Figure 4-6.

112 Section 4.2 The if Statement

@ dragon.shakeHead :

public void shakeHead (String ;%) yesOrNo) {

create new variable

(Do Nothing

rder " forAllTogether ifﬁwait(duratlon 5 rint{ text:, object),ll

FIGURE 4-6 Dragging the if control

For the moment, we will just choose true as a placeholder value. Alice then generates an
if statement in the method, as shown in Figure 4-7.

‘E]if(”tnrjgef%){“m S S _— S —— - '
(Do Nothing !
}else{

(Do Nothing

public void shakeHead (String (%] yesOrNo;) {

FIGURE 4-7 The Alice if statement

4.9.9 if Statement Mechanics

An if statement is a flow control statement that directs the flow according to the value
of a condition. Alice’s if statement has the following structure:

if (Conditiom) {
Statements;

} else {
Statements,

and we might visualize the if statement’s flow-behavior as shown in Figure 4-8.

Chapter 4 Flow Control 113

true @ false

Statements; Statements,

\£’_/,_J

FIGURE 4-8 Flow through an if statement

Figure 4-8 shows that when the flow reaches an if statement, it reaches a “fork” in
its path. Depending on its condition, the flow proceeds one way or the other, but not
both. That is, when the flow first reaches an if statement, its Condition is evaluated. If
the value of the condition is true, then the flow is directed through the first group of
statements (and the second group is ignored); if the condition’s value is false, then
the flow is directed through the second group of statements (ignoring the first group),
Put differently, when the if statement’s Condition is true, then the first group of state-
ments is selected and the second group is skipped; otherwise, the second group of statements
is selected and the first group is skipped. The if statement’s behavior is sometimes called
selective flow, or selective execution.

4.2.3 Building i £ Statement Conditions

Back in the user story, we want the dragon to shake its head up and down if yesorNo is
equal to yes; otherwise, it should shake its head sideways. We saw in Figure 4-3 that the
equality operator is ==, so that is what we need. To use it, we can click on the yesOrNo
parameter, drag it into the editing area, and drop it on the placeholder in the if statement’s
condition. Alice will display a menu from which we can choose yesorNo ==, followed by a
second menu from which we can choose the b-value, as shown in Figure 4-9.

it

ad

sl

drag .shak

i,

eH

public void shakeHead (stringT) yg;QFN;j){

create new variable

Dao Nothing

FIGURE 4-9 Dragging a parameter to an if statement’s condition

114 Section 4.2 The if Stafement

Choosing other for the b-value produces a dialog box into which we can type
"yes". When we click its ok button, Alice generates the condition shown in Figure 4-10.

@ dragon.shakeHead

public void shakeHead (String | [3)yesOrNo:) {

[DorNothn_E)“ E—

Yelse{
{Do Nothing

FIGURE 4-10 An if statement’s condition using a parameter

With the condition in place, finishing the method consists only of placing messages
in the top Do Nothing area to shake the dragon’s head up and down, and placing mes-
sages in the bottom Do Nothing area to shake its head sideways. Figure 4-11 shows the
finished method.

dragon.shakeHead

create new parameter
create new variable

a

dragon.neck.head i.tum(FORWARD ~], _headMovement revolutiol

dragon.neck.head — %.tum(FORWARD = |, headMovement revolutions = | }; duration =0.25 seconds = !more... -

NN L N |

FIGURE 4-11 The dragon.shakeHead () method (final version)

In Figure 4-11, we used a local Number variable named headMovement to store how
far the dragon turns his head. By using it in each of the turn() messages instead of
actual numbers, we simplify the task of finding the right amount by which the dragon
should shake his head, since trying a given value only requires one change (to the vari-
able) instead of six changes.

| public void playScene3 () {

"doInOrder;{
princess .say(Heilo.); duration=13seccnd fontSize=30 more...
wait{ 3 seconds -)
princess .say(Canyouunderstand me?); duration =2 seconds fontSize =30 more...
dragon.shakeHead (yesOrNo =yes)

N
it
¢
¢
i

princess .say(Canyou speak?). duration=2seconds fontSize=30 more...
dragon.shakeHead(yesOrNo =no)

princess .say(Canyou only answer yes orno questions?) duration=3 seconds - fontSize=30 more...
dragon.shakeHead { yesOrNo =yes)

- princess - .say(Areyouatame dragon?); duration =2 seconds fontSize =30 more...
dragon.shakeHead { yesOrNo=no =);

When we click Alice's Play button, we see that the shakeHead () method works as
intended, as shown in Figure 4-13.

424 Thewait () Statement

To introduce a time delay between the princess’s first and second statements in Figure 4-12,
we used another flow control statement named wait (), whose form is as follows:

wait (numSecs);

116 Section 4.2 The if Statement

When the flow reaches this statement, Alice pauses the program’s flow, sets an
internal timer to numSecs seconds, and starts this timer counting down towards zero.
When the timer reaches zero, Alice resumes the program’s flow at whatever statement fol-
lows the wait ().

4.2.5 Validating Parameter Values

In the previous example, we saw how the if statement can be used to direct the flow of a
program through one group of statements while bypassing another group, where each
group of statements was equally valid. A different use of the if statement is to guard a
group of statements, and only allow the flow to enter them if “everything is ok.”

To illustrate, let us return to the jumping fish example from Section 3.2. There, we
built a method for the Pinkminnow class named jump(), with a parameter named
distance to which we could pass an argument indicating how far we wanted the fish to
jump. Something we did not discuss in Section 3.2 was whether or not there are any
restrictions or preconditions on the value of this argument (that is, limitations to how far
the fish can jump). This situation — where a parameter’s value needs to be checked for
validity before we allow the flow to proceed — is called validating the parameter.

If we assume that the fish can only jump forward, then one easy restriction is that
the argument passed to distance must be positive. We can check this with the condition
distance > 0. Passing an argument that is O or less can be treated as an error.

There may also be an upper bound on how far a PinkMinnow can jump, but identifying
such a bound is more difficult. Minnows are rather small fish, so 2 meters might be a reasonable
upper bound. However if 2 minnow were bigger than normal, or were super-strong, maybe it
could jump farther, so we want to make this upper bound easy to change. We can do so by defin-
ing a variable named MAX_DISTANCE, and then using the condition distance <=
MAX_DISTANCE to check that the argument passed to parameter distance is within this bound.

If a variable’s value will not change, and its purpose is to improve a program’s readability,
name it with all uppercase letters, to distinguish it from normal variables.

We now have two conditions that need to be met in order for the argument passed to
the parameter to be deemed valid: distance > 0 and distance <= MAX_DISTANCE. Since
both of these must be true in order for our argument to be acceptable, we use the boolean
AND operator (&&) to combine them: distance > 0 && distance <= MAX DISTANCE.

We will use these ideas to revise the jump () method, as follows:

if (distance > 0 && distance <= MAX_DISTANCE) {
// ... statements performed when distance is valid
// (make the fish jump)
} else { // ... distance is invalid
if (distance <= 0) {
// ... statements performed when distance is too low
} else {
// ... statements performed when distance is too high

}

Chapter 4 Flow Control 117

Here, we are using an if statement with a second if statement nested within its
else statements. The first if is often called the outer if, and the second if is often
called the inner if, or the nested if.

Figure 4-14 presents a revised version of the jump () method, using this approach to
validate the parameter.

)

1@ pinkminnow.jump
Number ;23 height = 1~ .; Number iz haifDist = 1~ ; Number .=l startStop = 1 - _;

Number ‘fizf angle.= 01 - .; Number [z MAX_DISTANCE = 2~ |;

@i (< <= MAX_DISTANCE = -~ ') |-)
i (collapséd)_statémeﬁts ﬁo mrake the ﬁs_h‘jrurr'rp distanpe ’ :
iHdolnOrder{......... }

- Yelse{

‘BiF(7 distance < =0~ - J{
' < pinkminnow - “.say(| can only jump positive distances. -) duration =2 seconds = . fontSize =30 more... -
: Yelse{

pinkminnow - _say(. The maximum distance | canjumpis ~ + MAX_DISTAN(;E - toString) -« - 'y duration =2 sed

FIGURE 4-14 Vaolidating a parameter’s value with nested i £ statements

To save space, we have collapsed the doInorder statement that contains the
statements that make the fish jump, using the plus (+) sign at the beginning of the
statement.

Let us take a moment to trace the program flow through the revised method:

® When distance is valid, the outer if’s condition will be true, so flow will

proceed into the statements that make the fish jump, as we saw in Figure 3-36
in Chapter 3.

® When distance is invalid, the first condition will be false, so flow will pro-
ceed into the else statements of the outer if. The only statement there is the

inner if statement, which determines why distance is invalid (too small or
too large?):

B [fdistance is zero or less, the flow proceeds to the statement in which we send
the fish the first say () message.

B Otherwise, distance must be greater than MAX_DISTANCE, so the flow proceeds
to the statement in which we send the fish the second say () message.

118 Section 4.2 The if Statement

To illustrate, Figure 4-15 shows the fish’s behavior when we send it the message jump (-2).

| can only jump pbsrtive distances.

FIGURE 4-15 Asking the fish to jump a negative distance

Similarly, Figure 4-16 shows the fish’s behavior when we send it the message jump (3).

The maximum distance | can jump is
120

FIGURE 4-16 Asking the fish to jump too far

When building a method with a parameter, think about whether there are any “bad”
arguments that could be passed to the parameter. If so, use an if statement to guard
against such values.

The if statement thus provides a way to build if-then-else logic into a method.
When such logic uses a method’s parameter for its condition, then the method can pro-
duce different behaviors, based on what argument is passed to that parameter when the
message is sent.

4.3

(hapter 4 Flow Control 119

4.3.1 Introducing Repetition

In Section 2.2.1, we built a £1apWings () method for the dragon, and in Section 2.3, we saw
how to rename, save, and import the dragon as a £lappingDragon. One drawback to the
flapwings () method is that the £lappingbragon will only flap its wings once. Now that
we have learned about parameters, we might improve this method by passing it an argument
specifying how many times the dragon should flap its wings. To store this argument, we will
need a Number parameter, which we will name numTimes. We might describe the behavior
we want this way:

Parameter: numTimes, a Number.
For each value count =1, 2, ..., numTimes:

The dragon flaps its wings once.

Since we already know how to make the dragon flap its wings once, the idea is
to have the method redirect the flow so as to repeat the wing-flapping behavior
numTimes times.

We can start by opening the flapwings () method from Figure 2-16. To make the
dragon’s wing-flapping seem more realistic, we might adjust the duration values of the
wing movements, so that downstrokes (that is, beating against the air) take longer than
upstrokes (that is, resetting for a downstroke). In the version below, we've made the com-
plete cycle (down-stroke and up-stroke) require 1 second.

To make the £flapWings() method flap the dragon’s wings more than once, we
define a Number parameter named numTimes, as shown in Figure 4-17. Next, we drag the
loop control from the bottom of the editing area into the method. Since we want to
repeat the method's wing-flap behavior, we drop the loop control at the very beginning of
the method. When we drop it, Alice displays an end menu from which we can choose the
number of repetitions we want, as shown in Figure 4-17.

120 Section 4.3 The for Statement

b

<] ﬂapplngragon.ﬂamegs

create new parameter
create new variable

public void flapWings { Number 32 numTimes!) {

evolutions f I duration =0.75 seconds © [more...~

ﬂap;;ingDragon.leftwi =) revolutions < |);. duration =0.26 seconds:,! more,..”

= flappingDragon.right vfing = f.roll(LEFT~ |, 0.2 revolufons = {); duration =026 seconds ~ {more...~

rirt(text], object])

FIGURE 4-17 Dragging the 1oop control

When we select numTimes, Alice inserts an empty for statement in the method, as
shown in Figure 4-18.

create new parameter
create new variable

for {int index=0; index< numTimes times vj ; index++) { | show c:njlgél icated v... |
{Do Nothing

:EldoInOrder {
f /i Downstroke: make both wings flap DOWN together~ |

doTogether {
flappingDragon.left wing ~ }.roll(LEFT~ i, .2 revolutions — 5); duration =0.75 seconds — I more...~

flappingDragon.right wing ~ i roli{ RIGHT ~ ', 0.2 revolutions ~ |); duration =0.75 seconds ~ ' more...

L1 Unetrnka: make hnth winas fian | IP tnasthar< |

FIGURE 4-18 An empty for loop

To finish the method, we drag the doInorder statement below the for statement
into the for statement, resulting in the method definition shown in Figure 4-19.

Chapter 4 Flow Control 121

) appingDragon.ﬂapWings

public void flapWings { Number “{23 numTimes.) {

create new variable|

i.Efor (int index=0; indéxé 'numTime_srtimes — ;Index++) { { show comficafed V...
i EldoinOrder {
1/ Dowmstroke: make both wings flap DOWN togather -

-); duration =0.75

.2 revolutions —

); duration =025 seconds
)

duration = 0.25 seconds

FIGURE 4-19 The revised £1apwings () method

With this definition, if we send the dragon the message £lapWings (3), then it will
flap its wings three times. If we send it the message £lapWings (8), it will flap its wings
eight times.

4.3.2 Mechanics of the for Statement

The for statement is a flow control statement whose purpose is to direct the program’s flow
through the statements within it, while counting through a range of numbers. For this rea-
son, it is sometimes called a counting loop. If we were to send the dragon the message
flapWings(3); then the for statement would count 0, 1, 2 (performing the statements
within it once for each number), and then quit. If we were to send dragon. flapWings(8);
then the for statement would count 0, 1, 2, 3, 4, 5, 6, 7 (again, performing the
statements within it once for each number), and then quit. More generally, the for state-
ment in £lapWings () will always count from 0 to numTimes-1.

How does it work? Alice’s “simple” for statement has the structure shown below:

for (int index = 0; index < limit; index++) {
Statements

When the program’s flow reaches this statement, the flow behaves as shown in
Figure 4-20.

127 Section 4.3 The for Statement

v

index = 0

true

Statements

v

index++

|

—

FIGURE 4-20 Flow through a for statement

As indicated in Figure 4-20, the index = 0 in a for statement is performed just once,
when the flow first reaches the statement. The for statement’s condition index < 1limit is
then checked. If the condition is £alse, then the flow is directed around the statement s within
it to whatever statement follows the for statement. If the condition is true, then the
Statements within the for statement are performed, followed by the index++ (recall that ++ is
the increment operator). The flow is then redirected back to the condition, restarting the cycle.

In Figure 4-21, we trace the behavior of the for statement in Figure 4-19 when we

send dragon the message flapWings (3).

1 index = 0; Initialize index index’s value is 0
2 index; numTimes | The condition is true | Flow is directed into the loop
(0 <3) o
doInOrder Flap wings The first repetition
4 index++ Increment index index’s value changes from
Olo1l -
5 i;xdex3< numTimes | The condition is true | Flow is directed into the loop
(1 <3)
doInOrder Flap wings The second repetition
7 index++ Increment index index's value changes from
lfo2

FIGURE 4-21 Tracing the flow of £1apwings (3)

continued

Chapter 4 Flow Control 123

8 :(.x21dex3< numTimes | The condition is true | Flow is directed into the loop
< 3)
9 doInOrder Flap wings The third repetition
10 index++ Increment index index’s value changes from
2to3
11 index < numTimes | The condition is false | Flow is directed out of the
(3 <3) |oop
12 | Flow leaves the for statement, moving to the end of the method

FIGURE 4-21 Tracing the flow of £1apwings (3) (continued)

The simple version of the Alice for statement always begins counting with 0, uses
index < 1limit as the condition (for whatever 1imit value we specify), and uses
index++ as the way to increase the index. If we want different values for any of these, we
can click the show complicated version button on the first line of the for statement.
(The button appears as show complicated v... in Figure 4-19). Clicking this button
“expands” the first line of the for statement into the form shown in Figure 4-22.

Jindex= 0~ |; Index< numTimes times = | ; index+= 1~ i [show simple version |

FIGURE 4-22 The complicated for loop

Where the simple version just lets you modify the 1imit value, the complicated ver-
sion also lets you set the initial value of index to a value other than zero, and increase
index by a value other than 1 each repetition.

In our experience, the simple version of the for loop is sufficient most of the time,
but Alice provides the complicated version for situations where the simple version is
inadequate. Both versions will only count up; if you need to count down, you will need to
use a while statement (see Section 4.4) with a Number variable that you explicitly set,
test, and decrement.

4.3.3 Nested Loops

Suppose the first scene of a user-story is as follows:

A castle sits in a peaceful countryside. A dragon appears, flying toward the castle. When
it gets close, it circles the castle’s tower three times, and then descends, landing on the
castle’s drawbridge.

3
i

B
i

124 Section 4.3 The for Statement

Using divide-and-conquer, we might divide this scene into three shots:
1. A castle sits in a peaceful countryside. A dragon appears, flying toward the castle.

2. When it gets close, it circles the castle’s tower three times.

3. It then descends, landing on the castle’s drawbridge.

The first shot can be built several ways. One way is to position the dragon off-
screen, store the distance from the dragon to the castle’s drawbridge in a variable, and
then use a move () statement to move the dragon that distance, as we have seen before.
Another way is to go into the Add Objects window, position the dragon above the cas-
tle’s drawbridge, move it upwards until it is even with the castle’s tower, and then (using
more controls) click the drop dummy at selected object button. If we then drag
the dragon off-screen, the program can move it to the dummy’s position above the draw-
bridge using the setPointOfView() message.

The third shot can also be built in several ways. Section 4.4 presents one approach.

To build the second shot, we will use a for statement controlling other statements
that make the dragon fly around the castle tower, as shown in Figure 4-23.

: O world playScene1Shot2
voi play ene1shot2(){

create new variable

“Bfor (int Index=0; Index< 3 times ~ Indexﬁ) { show comgllcated Vo |
dqugemer{ R <% LT AR T L i
| flappingDragon - {turn(RIGHT ~ | 1 revolution = |) asSeenBy- castle.Tower ~ duratlcn =4.5 seconds = vsryle =BEGIN _AND END_ABRUPTLY .~ 5! i

£ flappingDragon.flapWings{ numTimes=d4-|); -)) i

4.4

FIGURE 4-23 Making the dragon circle the castle

As defined in Figure 4-23, the for statement contains a doTogether statement
that causes the dragon to simultaneously fly around the castle (taking 4.5 seconds per
circuit), and flap its wings four times. As shown above, this behavior will repeat three
times. If, after testing the method, we were to decide that two circuits around the castle
tower would be preferable, all we need to do is change the for statement’s 1imit value
from 3 to 2.

Figure 4-23 is deceptively simple. It contains several subtleties that we discuss next.

Nested £or Statements

One subtlety is that this method is actually using two for statements: the one visible in
Figure 4-23, plus the one that is hidden within the £1apWings () method. This situation
— where one for statement is controlling another for statement — is called nested for
statements, because one for statement is nested within another.

In Figure 4-23, the inner for statement (the one hidden within £lapWings ()) repeats
4 times for every 1 repetition of the outer for statement (the one that is visible). With the
outer statement repeating 3 times, the dragon flaps its wings a total of 3 X 4 = 12 times. Nested

Chapter 4 Flow Confrol 125

4.4

loops thus have a multiplying effect: if the outer loop repeates i times and the inner loop
repeats j times, then the statements in the inner loop will be repeated a total of i X j times.

The asseenBy Attribute

The second subtlety is how the turn() message in Figure 4-23 causes the dragon to cir-
cle the tower. Alice’s turn() message has a special asseenBy attribute. Normally, this
attribute is set to None, in which case turn() just causes its receiver to revolve about its
LR axis or its FB axis. However, if we specify another object (like castle.tower) as the
value of the asseenBy attribute, then the turn() message causes its receiver to revolve
around that object. Figure 4-23 uses this trick to make the dragon revolve around the cas-
tle tower once for each repetition of the outer for statement.

The duration Attribute

In testing the method, we initially set the duration of the turn() message to 4 seconds,
to match the dragon’s 4 wing-flaps (1 per second) per circuit of the tower. This produced
a “hitch” in the animation as the dragon finished each circuit. The problem is that while
each wing-flap takes 1 second to complete, the flapWings(4) message consumes
slightly longer than 4 seconds.! As a result, the 4-second turn() message was finishing
before the 4 wing-flaps. We were able to smooth the animation by increasing the duration
of the turn() message slightly and setting the message’s style attribute to
BEGIN_AND_END_ABRUPTLY, as shown in Figure 4-23.

The while Statement

The for statement is a means of causing flow to repeatedly move through the same group of
statements a fixed number of times. For this reason, the for statement is often called a count-
ing statement, or a counting loop. The program must “know” (that is, be able to compute)
how many repetitions are needed when flow reaches the for statement, to set its 1imit value.

This raises a problem: What do we do when we encounter a situation for which we
need repetitive flow-behavior, but we do not know in advance how many repetitions are
required? For such statements, Alice (and other programming languages) provides the
while statement.

44.1 Introducing the whi 1e Statement

In Section 4.3.3, we began work on a scene consisting of three shots:

L. A castle sits in a peaceful countryside. A dragon appears, flying toward the castle.

o

When it gets close, it circles the castle’s tower three times.

[#¥)

It then descends, landing on the castle’s drawbridge.

1. For each repetition of a for statement, its index++ statement and the index < limit condition must be
processed, which consumes time. A £1lapWings (n) message thus consumes more than n seconds.

126 Sedtion 4.4 The while Statement

We have seen how to build the first two shots, and it is possible to build the third
shot using a variable, a function, and a doTogether statement containing a move () mes-
sage and the £lapWings () method. The drawback to this approach is that we must coor-
dinate the move () and flapWings () messages, so that the duration of the move () (that
is, how long the descent will take) coincides with the wing-flaps of the dragon. If we later
change the elevation of the dragon above the drawbridge, we will have to recoordinate
the move() and flapwings () messages.

In this section, we will see an alternative way to build this shot, using a while state-
ment, a function, and a doTogether statement containing a move () message and the
flapWings () message. The idea is to repeatedly (1) have the dragon flap its wings, and
(2) move it downwards whatever distance it drops in one wing-flap, so long as it is above
the drawbridge.

We begin by moving the camera closer (via a dummy we'll rename shot1-3, using
the techniques described in Section 2.4.), to better see the dragon’s descent, as shown in
Figure 4-24.

world.playScene1Shot3 e

|

i}E dolnOrder { \
. FldoTogether{ "~~~ i) - T 7 11

amera + | .setPointOfView(shot13~ i }); more...~

appingDragon.flapWings (numTimes =1 *j)

FIGURE 4-24 Moving the camera closer

With the camera in position, we are ready to make the dragon descend. To do so, we
click the while control at the bottom of the editing area, drag it into the method, and
drop it at the last position within the doInorder statement. See Figure 4-25.

world.playScene1Shot3

public void playScene1Shat3 () {

dolnOrder {
‘EdoTogether {] -
gn]ggi’.setPolntONIew(shot13 = I); more...~

’ |
, é;

¢ flappingDragon.flapWings{ numTimes =1~ f h

FIGURE 4-25 Dragging the while control

Chapter 4 Flow Control 127

When we drop it there, Alice generates a condition menu from which we can
choose a condition to control the while statement. For the moment, we just choose true
as a placeholder. Alice then generates the empty while statement shown in Figure 4-26.

: @ world.playScene1Shot3
public void playScene1Shot3 () {

Create new parameter
create new variable

“E dolnOrder {
VZ:E quether{
_.setPolntONIew(ghqﬂ‘§); more...

ragon.fiapWings numTimes=1-);

‘Bwhile (true ~){

{Do Nothing
i}

FIGURE 4-26 An empty while statement

For each repetition of the while statement, we want the dragon to flap its wings
once and move downward a short distance (still to be determined). We want this behav-
ior to repeat as many times as necessary, so long as the dragon is above the drawbridge.
For the while statement’s condition, we can thus drag the dragon’s isabove () function
into the while statement’s placeholder condition, and when we drop it, choose the cas-
tle's drawbridge as its argument, as shown in Figure 4-27.

‘:'_.vahiie(iéyﬂié;;lngﬁfa‘gdn *_‘E.isABoAve(carét'lie‘.brri'dgw i) more.
" {Do Nothing
i

FIGURE 4-27 Repedting so !ong as the dragon is above the drawbridge

Any statements we place within the while statement will be repeated so long as the
condition £lappingDragon.isAbove (castle.Bridge) produces the value true. Those
statements must ensure that the condition eventually becomes false, or else an infinite
loop will result. That is, if the flow reaches the while statement shown in Figure 4-27, the
flow will remain there sending £lappingDragon the isaAbove () message over and over
forever, or until we terminate the program, whichever comes first. Any time the flow
reaches a while loop whose statements do not cause its condition to eventually become
false, this infinite looping behavior is the result.

To avoid an infinite loop, the loop’s statements should flap the dragon’s wings and
move it down a small distance, so that its bounding box eventually touches that of the
bridge. When that happens, the isAbove() condition will become false and the loop
will terminate. We can use these ideas to complete the method as shown in Figure 4-28.

P

128 Section 4.4 The while Stofement ' —

P d.playScene1Shot

public void playScene1Shot3 () { .
create new varlable| B

| EdoinOrder {
© i8doTogether{

FIGURE 4-28 The playScenelshot3 () method {final version)

Each repetition of the while statement in Figure 4-28 takes 1 second, during which
the dragon simultaneously flaps its wings and moves down 5 meters. If we decide this
descent is too slow, we can double its descent rate by changing the 5 to a 10; or if it
seems too fast, we can slow the descent by changing the 5 to a 4, a 2, or a 1. The key
decision in this approach is how far a dragon should descend in 1 second (which is sim-
pler than the use-a-variable approach).

The final statement in the method zooms the camera in (using another dummy) for a
closer shot of the dragon on the bridge after its descent, yielding the shot in Figure 4-29.

FIGURE 4-29 The dragon on the drawbridge

Chapter 4 Flow Control 129

44.2 while Statement Mechanics

Where the for statement is a counting loop, the while statement is a general, or indefinite
loop, meaning the number of repetitions to be performed need not be known in advance.
The structure of the Alice while statement is as follows:

while (Condition) {
Statements

}

When flow reaches a while statement, it proceeds as shown in Figure 4-30.

@ false

true

Statements

L]
e

FIGURE 4-30 Flow through c while statement

In Figure 4-30, when flow first reaches a while statement, its Condition is evaluated.
If it is false, then the flow leaves the while statement, bypassing its Statements.
However, if it is true, then the statements within the while statement are performed,
after which the flow is redirected back to recheck its condition, where the process
begins again.

4.4.3 Comparing the £or and while Statements

If you compare Figure 4-30 to Figure 4-20, you will see that the while statement's
behavior is actually much simpler than that of the for statement. This is because the
while is the more general flow-control statement; whereas the for statement is useful
mainly in counting situations, the while statement can be used in any situation where
repetition is required.

So when should you use each statement? Whenever you are working to produce a
behavior that needs to be repeated, ask yourself this question: “Am 1 counting some-
thing?” If the answer is “yes,” then use a for statement; otherwise, use a while state-
ment. For example, in Figure 4-19 and Figure 4-23, we counted wing-flaps and tower-
circuits, respectively. By contrast, in Figure 4-28, we were not counting anything, just
controlling the dragon’s descent.

Both the while and the for statements test their condition before the statements
within the loop are performed. In both cases, if the condition is initially false, then
statements within the loop will be bypassed (that is, not performed). If you write a pro-
gram containing a loop statement that seems to be having no effect, it is likely that the

130 Section 4.4 The while Statement

loop’s condition is false when flow reaches it. To remedy this, either choose a different
condition, or ensure that its condition is true before flow reaches the loop.

4.4.4 A Second Example

As a second example of the while statement, suppose that Scene 1 of a story has a girl
named Jane dropping a soccer ball (that is, a football everywhere outside of the U.S.). Jane
lets it bounce until it stops on its own. Our problem is to get it to bounce realistically.

When dropped, a ball falls until it strikes a surface beneath it. It then rebounds upwards
some distance (depending on some bounce factor that combines its elasticity, the hardness of
the surface it hits, etc.), drops again, rebounds again, drops again, rebounds again, and so on.
We can sketch the behavior as being something like that shown in Figure 4-31.

BOUNCE_FACTOR*distance ToGround

distance ToGround |

! |

t f
! |

| I
v v

ground

FIGURE 4-31 Sketch of the up-down motion of a bouncing ball

For simplicity, we will just have the soccer ball bounce straight up and down.

Using the sheBuilder (located in the People folder in the Alice Gallery), the
SoccerBall class from Alice’s Web Gallery, and the quad-view window, we might start
by building a scene like the one shown in Figure 4-32.

FIGURE 4-32 Jane with the soccer ball

* Flow Control 131

To produce the desired bouncing behavior, we can write a dropAndBounce ()
method for the soccerBall, which is shown in Figure 4-33.

E . O worismytestmionea - |7 O wond eneropsa. Jo soccerBaII.dropAndBour@ L PRI R
public void dropAndBounce ()} { E;e:te new ;;;a‘r;;'
Number i:: distanceToGround =0 ; Number ::: BOUNCE_FACTOR = 067 : [ereate new varial
doinOrder {
distunceTelround set(value, SoccerBall .distanceAbove(ground) more...); more...

while{ distanceToSiound >0 H

soccerBall .move(DOWN |, dutonceTosroundmeters) duration = distanceToSround seconds style = BEGIN_GENTLY_AND_END_ABRUPTLY n

)); more...

digta .set{ value, { ":stanceiol

soccerBall .move{ UP , distanceiolSroundmstars) duration = disiance und seconds style = BEGIN_ABRUPTLY_AND_END_GENTLY more

When Jane drops the ball, we do not know in advance how many times it is going to
rebound, so we have used a while statement instead of a for statement. The condition
controlling the loop is this: the ball should continue to bounce so long as its distance
above the ground exceeds zero.

We have assumed that on each bounce, the ball will rebound to 2/3 of the distance
it fell previously. (If this proves to be a poor assumption, we have made it easy to change
by storing the 2/3 in a variable called BOUNCE_FACTOR.) By storing the (initial) distance
from the ball to the ground in a variable named distanceToGround, then for each repe-
tition of the loop, we

move the ball down distanceToGround meters
change the value of distanceToGround to distanceToGround *BOUNCE_FACTOR

move the ball up distanceToGround meters (which is now 2/3 of its previous value)

To make the ball's behavior seem more realistic, we set the duration of each
bounce-movement to the current value of the distanceToGround variable. Thanks
to this, each successive bounce-movement will occur faster as distanceToGround
gets smaller.

Another refinement to increase the realism was to set the style of the move () caus-
ing the ball's drop to BEGIN_GENTLY_AND_END_ABRUPTLY, and set the style of the move ()
causing the ball's rebound to BEGIN_ABRUPTLY_AND_END GENTLY. The net cffect is to
make a fast down-to-up transition when the ball bounces, and to make a slow up-to-
down transition as the ball reaches the peak of its bounce.

Given the method in Figure 4-33, we can casily build a world method (since it ani-
mates two different objecets) in which Jane drops the ball, as shown in Figure 4-34.

132 Section 4.5 Flow-Control in Functions

4.5

world.janeDropsBall
public void janeDropsBall () {
create new variablel

'Y;E doinOrder{
HdoTogether{

]ane.UpparBody.Chest.LeﬂUpperAnn.LeﬂForearm = Lroll{ RIGHT - <, 0,06 revolutions —)); duration =025 seconds - Emora... - : { :
- ’ J
J

Z:rBaIl.dropAndBouhmc;("j;A T

FIGURE 4-34 Method world.janepropsBall()

Try this yourself, and experiment with the statements and settings shown in
Figure 4-33, to see how each one affects the ball's behavior. (There’s always the
Undo button!)

Flow-Control in Functions

At the end of Chapter 3, we saw that if we want to ask an object a question for which
there is not already a function, we can define our own function to provide the answer.
The functions we wrote there used sequential flow, and were fairly simple. The flow-control
statements we have seen in this chapter allow us to build functions that answer more
complex questions.

4.5.1 Spirals and the Fibonacci Function

Suppose that we have a story in which a girl finds an old book. The book tells her that
there is a treasure hidden near a certain palm tree in the middle of the desert. The book
contains a map showing how to find the tree, plus instructions for locating the treasure
from the tree. Suppose that Scene 1 of the story has the girl finding the old book and
reading its contents. In Scene 2, the girl uses the map to locate the palm tree. In Scene 3
she follows the instructions:)

Scene 3: The girl is at the tree, her back to the camera. She says, “Now that | am at the
tree, | turn to face North.” She turns to face the camera. “Then | walk in a spiral of six
quarter turns to the left, and then say the key phrase.” She walks in a spiral of six quarter
turns to her left, says a key phrase, and an opening appears in the ground at her feet.

The main challenge in building this user story is getting the girl to move in a spiral
pattern. Mathematicians have discovered that many of the spirals that occur in nature —
for example, the spiraling chambers inside a nautilus shell, the spiral of petals in a rose,

Chapter 4 Flow Control 133

and the spiraling seeds in sunflowers and pinecones — all use a pattern given in the fol-
lowing numbers:

1,1,2,3,5, 8,13, 21, 34, 65, £9, 144, ...

Can you see a pattern in these numbers? The first known mention of them is by the
Indian scholar Gospala sometime before 1135 AD. The first European to discover them
was Leonardo Pisano, a 13" century mathematician who found that they predict the
growth of rabbit populations. Leonardo was the son of Guglielmo Bonaccio, and often
called himself Fibonacci (short for “son of Bonaccio”). Today, these numbers are called
the Fibonacci series.

To draw a spiral from the series, we draw a series of squares whose lengths and
widths are the Fibonacci numbers. Starting with the smallest square, we draw a series of
quarter turn arcs, crossing from one corner of the square to the opposite corner, as
shown in Figure 4-35.

71N
1\{1

1

5 8

FIGURE 4-35 A Fibonacci spiral pattern

To move the girl in the story in a spiral pattern, we can use a similar approach. More
precisely, we can move her in a close approximation of the Fibonacci spiral as follows:

I. move her forward 1 meter while turning left 1/4 revolution

2. move her forward 1 meter while turning left 1/4 revolution
3. move her forward 2 meters while turning left 1/4 revolution
4. move her forward 3 meters while turning left 1/4 revolution

N

move her forward 5 meters while turning left 1/4 revolution

move her forward 8 meters while turning left 1/4 revolution

134 Section 4.5 Flow-Control in Functions

More concisely, we can have her move 6 times, each time moving a distance equal
to the next Fibonacci number while turning left 1/4 revolution. That is, if we had a func-
tion that, given a positive number i, computes the it Fibonacci number, we could write
the playScene3 () method as shown in Figure 4-36.

® world.playScene3

public void playScene3 ())

BT I IS [-

=171 . . create new variable

TboracciGin® |.sdy{ Nowthatim atihe ree, tm to face Nor
fibonacciGin - |

Ty duration =2 seconds = TfontSize 330 < |more...

turnToFace(camera=— .); more...~

vdBngot_ﬁeri i

onacciGir - | wurn{_ LEF } “T); style= sEg@N_ANn_ENﬁ;AEﬁﬁﬁ%LQ‘?’E moren—
fibonacciGirt -~ i.move(FORWARD:V!', distanceToMove melers fj }; style= BEGIN_AND_ENP_ABRUPTLY < jmore...

,ﬁborféicislﬁ:;;;keyPhrase(); ”
«~ .set{ opacity, .1 (100%) - 1); duration =1 second ~ Emore...’

FIGURE 4-36 The playScene3 () Method

In just a moment, we will build such a £ibonacci () function. Since it seems possi-
ble we may want to reuse it someday, we will define it within the girl, whom we have
renamed fibonacciGirl in Figure 4-36. (In the Alice Gallery, her name was
RandomGirl3).

4.5.2 The Fibonacc Function

To create the £ibonacci () function that is invoked in Figure 4-36, we select the girl in
the object tree, click the functions tab in her details area, and then click the create new
function button. Alice prompts us for the name of the function, so we enter £ibonacci.

To invoke this function, we must pass it a positive Number argument indicating
which Fibonacci number we want it to return. To store this argument, the function must
have a Number parameter. We will name this parameter n.

Design

The question the function must answer is this: Given %, what is the n'* Fibonacci num-
ber? If we look at the series carefully

1,1,2, 3,5, 8,13, 21, 34, 55, 89, 144, ...

Chapter 4 Flow Confrol 135

we can see this pattern: after the initial two 1s, every subsequent number is the sum of

the preceding two numbers. That is, there are two cases we must deal with:

if (nis 1 or n'is 2) the function’s result is 1;

otherwise, the function’s result is the sum of the precedihg two values in the series.

The tricky part is figuring out “the preceding two values in the series.” As we have
seen before, let’s first try doing this by hand. For example, to compute £ibonacei (9):

- 9':; a3 gt s s g

5. .. 8 . 1 . 2 34

. Since we are doing the same thing over and over, we can do this using a loop. To do
so, we store each value used per iteration in a variable: one for the next-to-last term, one
for the last term, and one for the result; we can then use a for loop to count from 3 to n.

When n is 9:

nextToLast 1 1 2 3. 5 8 13
T last +1 +2 /v+3 P 7 .8 /+13 +21
‘ — e A A A AL Y

result 2 3. 5 8 . 13 . .- 21 34

index 3 | 4 5. 6 1 8 9

Putting all of this together yields the following algorithm for the function:

1 Parameterﬁ n, a Number.
2 Number result = 0; Number nextToLast = 1; Number last = 1;
3 if (n'==1o0or n == 2) {
4 result = 1;
5 } else {
6 for (int index = 3; index < n+l; index++) {
7 result = last + nextTolLast;
-8 nextToLast = last;
9 last = result;
10 }
11}
12 return result;

136 Section 4.5 Flow-Control in Functions ; o

Coding in Alice

We can encode the algorithm in Alice as shown in Figure 4-37.

313 fibonacciGirl.fibonacci

create new parameter

ast=1-; Number 75 nextToLast = 171 create new variable

public Number fibonacei { Numb

Number{@ res'uE= 0 i; Number

;5o value, 1

s & f Tot | s _
index'= 3~ |; index< | (0= [+ 1)) = ;index+= 17X

i

rosult~ | et value, || (nestToLast [+ last=) =)

"nextToLast~ |.set{ value, last~ Iy

st~ |.set{ value, result=);

Fretum resutt- |;

FIGURE 4-37 The fibonacci () function

Note that the function uses the complex version of the for loop, because it begins

counting at 3.
Figure 4-38 traces the execution of the function when 4 is passed to n.

1 if condition - | Conditionis false | Controlflowstothe i£’s else
branch
2 index = 3 For loop is initialized index is 3 4.4
3 index < n+l The condition is true | Flow is directed into the loop
4 result = ... Compute fibonacci(3) | resultis2
5 nextTolast = ... Update nextToLast nextToLast is 1
6 last = ... Update last last is 2
7 index++ Increase index index is 4
8 index < n+l The condifion is true | Flow is directed into the loop
9 result = ... Compute fibonacci(4) | resultis3

FIGURE 4-38 Tracing the £ibonacei () function

continued

Chapter 4 Flow Confrol 137

4.6

] 7 nextToLast = ... Update nextToLast nextToLast is 2

11 last = ... Update last lastis 3

12 index++ Increase index index is 5

13 index < n+l The condition is false | Flow is directed out of the loop

14 return result; The function terminates result is 3, the 4" Fibonacci

number

15 Flowkledcves the function, refurning result fo the point where the function was

invoke

FIGURE 4-38 Tracing the fibonacci () function (continued)

Note that we initialize result to zero. If the user passes an invalid argument (for
example, zero or a negative number), then the function returns this zero. First, control
flows into the if statement’s else branch. However when its for loop tests the condi-
tion (3 < (n+1)), that condition will be false if n is negative or zero, so the body of the
for loop will be skipped. Control then flows to the return statement, and since result
has not been modified, the function returns zero.

Using this function, the for loop in Figure 4-35 will cause fibonacciGirl to move
in a spiral pattern, after which she says the key phrase and a dark opemng appears in the
ground at her feet. What happens next? It's up to you!

Chapter Summary

(1 Boolean operators allow us to build conditions.

U The if statement uses a condition to direct program flow selectively through one
group of statements while bypassing others.

U The for statement uses a condition to direct program flow through a group of state-
ments repeatedly, a fixed number of times.

U The while statement uses a condition to direct program flow through a group of state-
ments repeatedly, where the number of repetitions is not known in advance.

(1 The wait () message lets us suspend a program’s flow for a fixed length of time.

0 The asseenBy attribute alters the behavior of the turn() message.

o i i

138 Section 4.6 Chapter Summary

4.6.1 Key Terms

boolean expression
boolean operators
(&&, ||, 1)
Boolean type
boolean variables
condition
control structure
counting loop
flow control
flow diagram
general loop
if-then-else logic
if statement

Programming Proiects

4.1 Choose a hopping animal from the Alice Gallery (for example, a frog or a bunny).
Write a hop() method that makes it hop in a realistic fashion, with a (validated)
parameter that lets the sender of the message specify how far the animal should
hop. Then build a2 method containing just one hop() message that causes your ani-
mal to hop around a building.

4.2 Johnny Hammers is a traditional song with the lyrics below. Create an Alice program
containing a character who sings this song. Write your program using as few state-

ments as possible.

indefinite loop
infinite loop
nested statement

(inner statement, outer statement)
relational operators

==, I=, <, > <=, >=)
repetitive control
selective control
selective execution
selective flow
validating parameter values
wait () statement
while statement

Johnny hammers with 1 hammer,
1 hammer, 1 hammer.

Johnny hammers with 1 hammer,
all day long.

Johnny hammers with 2 hammers,
2 hammers, 2 hammers.

Johnny hammers with 2 hammers,
all day long.

Johnny hammers with 3 hammers,
3 hammers, 3 hammers.

Johnny hammers with 3 hammers,
all day long.

Johnny hammers with 4 hammers,
4 hammers, 4 hammers.

Johnny hammers with 4 hammers,
all day long.

Johnny hammers with 5 hammers,
5 hammers, 5 hammers.
Johnny hammers with 5 hammers,

all day long.

Johnny's very tired now,
tired now, tired now.
Johnny's very tired now,
so he goes fo sleep.

4.3 Using the horse we used in Section 3.4, build a gallop() method for the horse that
makes its legs move realistically through the motions of a gallop, with a (validated)
parameter that specifies the number of strides (or alternatively, the distance to gal-
lop). Then create a story containing a scene that uses your method to make the
horse gallop across the screen.

Chapter 4 Flow Control 139

4.4

4.5

4.6

4.7

4.8

The Song That Never Ends is a silly song with the lyrics below. Create an Alice pro-
gram containing a character who sings this song, using as few statements as possi-
ble. (If your computer has a microphone, get your character to “sing” a recording of
the song as well as “say” the lyrics. If you do not know the tune, find and listen to the
song on the World Wide Web.)

This is the song that never ends, This is the song that never ends,

and it goes on and on my friends. and it goes on and on my friends.

Some people started singing it not knowing what it | Some people started singing it not knowing what it
was, was,

and now they'll keep on singing it forever just and now they'll keep on singing it forever just
because. because.

This is the song that never ends,

and it goes on and on my friends. {ad infinitum,
Some people started singing it not knowing what it | ad annoyeum,
was, ad nauseum)
and now they'll keep on singing it forever just

because.

Build a world containing a person who can calculate the average of a sequence of
numbers in his or her head. Have the person ask the user how many numbers are in
the sequence, and then display a NumberDialog that many times to get the numbers
from the user. When all the numbers have been entered, have your person “say” the
average of those numbers.

Proceed as in Problem 4.5, but instead of having your person ask the user in
advance how many numbers are in the sequence, have your person and each
NumberDialog tell the user to enter a special value (for example, -999) after the
last value in the sequence.

99 Bottles of Pop is a silly song with the lyrics below. Create an Alice program in
which a,character sings this song. Use as few statements as possible. (Hint: Even
though this is a counting problem, you will need to use a while statement instead of
a for statement. Why?)

99 bottles of pop on the wall, 98 bottles of pop on the wall,
99 botiles of pop, 98 bottles of pop,

take one down, pass it around, take one down, pass it around,
98 bottles of pop on the wall. 97 bottles of pop on the wall.
(96 verses omitied) 1 bottle of pop on the wall,

1 bottle of pop,
take one down, pass it around
0 bottles of pop on the wall.

Using the heBuilder or sheBuilder (or any of the other persons in the Alice Gallery
with enough detail), build a person and add him or her to your world. Using your per-
son, build an aerobic exercise video in which the person leads the user through an
exercise routine. Using repetition statements, your person should do each exercise a
fixed number of times. {(Hint: Use Pose variables and the capture pose button.)

140 Section 4.6 Chapter Summary

4.9 Proceed as in Problem 4.8, but at the beginning of the program, ask the user to
specify the difficulty level of the workout (1, 2, 3, 4, or 5). If the user specifies 1,
have your person do each exercise 10 times. If they specify 2, 20 times. If they spec-
ify 3, 40 times, If they specify 4, 80 times. If they specify 5, 100 times.

4.10 From the Alice Gallery, choose a clock class that has subparts for the minute and
hour hands.

a.

Build a clock method named run() that moves the minute and hour hands realis-
tically (that is, each time the minute hand completes a rotation, the hour hand
should advance 1 hour). Define a parameter named speedup that controls the
durations of the hand movements, such that run(0) will make the clock run at
normal speed, run(60) will make the clock run at 60 times its normal speed,
run (3600) will make the clock run at 3600 times its normal speed, and so on.

. Build a clock method setTime (h, m) that sets the clock’s time to h:m (m minutes

after hour h).

_Build three functions for your clock: one that returns its current time (as a

string), one that returns its current hours value (as a Number), and one that
returns its current minutes value (as a Number).

. Build a clock method setAlarm(h, m) that lets you set the clock’s alarm to h:m.

Then modify your run () method so that when the clock’s current time is equal to
m minutes after hour h, the clock plays a sound (for example, Alice’s gong sound).

4.11 Using appropriately colored Shapes from the Alice Gallery, build a chessboard. Then
choose objects from the Gallery to serve as chess pieces. Build a class-level method
named chessMove () for each piece that makes it move appropriately (for example, a
bishop should move diagonally). For pieces that can move varying distances, the def-
inition of chessMove () should have a (validated) parameter indicating the distance
(in squares) of the move, plus any other parameters necessary. When your “pieces”
are finished, build a program that simulates the opening moves of a game of chess,
using your board and pieces.

4.12 Design an original 3—-5 minute story that uses each of the statements presented in
this chapter at least once.

FOI’J

there

The‘

Whe
butte
grou

Obje
Whe

1

| I T S

