Name	Date
	Geometry Midterm Review
Topics	s to include, but not limited to:
	-Points, lines and planes -Segment Addition Postulate
	-Midpoint of a segment
	-Bisector of a segment
	-Types of Angles (Right, Acute, Obtuse, Straight)
	-Angle Addition Postulate (there is only 180 degrees in a straight angle)
	-Adjacent angles
	-If p , then q is a conditional statement. p is the hypothesis and q is the conclusion.
	- If q, then p, is the converse statement.
	-Properties of Algebra and Properties of Congruence
	-Complementary Angles
	-Supplementary Angles
	-Vertical Angles are
	-Perpendicular lines are two lines that form angles. If two lines are perpendicular ther
	they form,
	then the lines are perpendicular.
	-Lines that do not intersect are either parallel or skew.
	-When two parallel lines are cut by a transversal:
	a. corresponding angles are
	b. alternate interior angles are
	c. same- side interior angles are
	d. If the transversal is perpendicular to one of two parallel lines, it is also perpendicular to the
	other one.
	-Five ways to prove lines are parallel are:
	a
	b
	C
	d

-Exterior Angle Inequality Theor	orem	
Statement: If p, then q		
Converse:		
Contrapositive:		
Inverse:		

- -You begin an indirect proof by assuming temporarily that what you wish to prove is NOT true. You then try to reach a contradiction of the given or of a known fact.
- -In triangle RST, if RT > RS, then $m \angle S > m \angle T$. Conversely, if $m \angle S > m \angle T$, then RT > RS.
- -The third side of any triangle is less than the sum of the other two sides and greater than the difference between them.

Geometry Midterm Review

Chapter 1:

1. Which diagram shows \overrightarrow{AK} and \overrightarrow{CG} intersect at point M in plane T.

A)

B)

- 2. Given A is between Y and Z and YA = 14x, AZ = 10x, and YZ = 12x + 48, find AZ. Draw a diagram.
- 3. Name the intersection of \overrightarrow{AE} and \overrightarrow{CG} .

4. Which angles form a linear pair?

5. If \overline{NQ} bisects $\angle RNP$, then $\angle QNP \cong \underline{?}$.

6. If \overline{RN} bisects $\angle SRQ$ and $m \angle 2 = 55^{\circ}$, then $m \angle 1 = \underline{?}$.

7. Graph the figure with the given vertices and identify the figure. Then find the perimeter and area of the figure.

Perimeter of figure:

Area of figure:

8. Graph the points D (2, 5) and G (8, -3) and draw \overline{DG} .

a) Find the distance between points D and G.

b) Find the coordinates of the midpoint of \overline{DG} .

c) If D were the midpoint of \overline{HG} , what would the coordinates of H be?

- 9. \overrightarrow{RS} is in the interior of $\angle TRU$, $m\angle TRS = 4x + 6$, and $m\angle SRU = 8x 6$.
 - a) Draw and label $\angle TRU$ and \overline{RS} .

b) Determine the value of x that will make \overline{RS} an angle bisector. Explain your steps.

Chapter 2:

10. If $m\angle ABD = 56$, find $m\angle DBC$. (Use the figure to the right)

- 11. What property justifies the statement. If $m \angle A = 10$ and $m \angle B = 10$, then $m \angle A = m \angle B$.
- 12. Find the value of x. (Use the figure to the right)

- 13. Write the contrapositive of the following statement. If x = 5, then x + 8 = 13.
- 14. Write the inverse of the statement: If a triangle has 3 equal sides, then it is equilateral.
- 15. Find the value of x. Then find the measure of $\angle ABD$.

16. Look for a pattern and make a conjecture. Then predict the next two numbers in each sequence.

Chapter 3:

- 17. List all pairs same-side interior angles.
- 18. List all pairs of alternate interior angles.
- 19. List all pairs of alternate exterior angles.
- 20. List all pairs of corresponding angles.
- 21. If l/lm, find the value of x. (Use the diagram at right)

For 22 – 24 use the diagram to the below.

- 22. Name all segments that are parallel to \overline{XY} .
- 23. Name all planes that intersect plane STX.
- 24. Name all segements that are skew to \overline{VW} .

25. Find the value of x and y.

26. Find the value of x and y.

27. Find x so that $l \parallel m$. Identify the postulate or theorem you used.

28. Find the value of the variable(s) in the figure. Explain your reasoning.

29. Write a two-column proof for the following.

Statements

Given:
$$\frac{l \parallel m}{m \parallel n}$$

Prove:
$$\angle 1 \cong \angle 12$$

Reasons

Chapter 4:

30. If \triangle *ABC* is isosceles with vertex angle \angle B, and $\overline{AE} \cong \overline{FC}$, which theorem or postulate can be used to prove \triangle *AEB* \cong \triangle *CFB*?

31. What are the lengths of the sides of this equilateral triangle?

32. Which triangles are congruent in the figure?

33. If $\Delta DJL \cong \Delta EGS$, then list all the corresponding sides and angles.

34. Quadrilateral MNQP is made of two congruent triangles. \overline{NP} bisects $\angle N$ and $\angle P$. In the quadrilateral, $m\angle N=50$ and $m\angle P=100$. What is the measure of $\angle M$?

35. Find the value of x, and find the value of $m \angle 1$, if $m \angle 1 = 4x + 10$.

36. Write a two-column proof. Mark your diagram.

Given: $\triangle ABC$ is an isosceles triangle.

 $\overline{BD} \perp \overline{AC}$

Prove: $\angle A \cong \angle C$

Statements

Reasons

Chapter 5:

37. In the diagram given, which angle has the greatest measure of $\angle 1$, $\angle 3$, $\angle 4$.

38. Determine the relationship between $m \angle RST$, $m \angle TRS$

39. Find the value of x and QA.

40. Point A is the incenter of $\triangle PQR$. Find $m \angle YGA$. (Use diagram at right)

- 41. In ΔMIV , Z is the centroid, MZ = 6, YI = 18, and NZ = 12.
- a) Find MR

42. List the sides of ΔRUH in least to greatest order.

43. Point *P* in the incenter of ΔXYZ . If PY = 40 and JY = 32, find *LP*.

- 44. Find the range for the third side of a triangle given two sides with measures of 7 km and 29 km.
- 45. Lines s, t, and u are perpendicular bisectors of the sides of ΔFGH and meet at J. If JG = 2x + 2, JH = 2y 2, JF = 8, and HI = 2z - 3, find x, y, and z.

46. Is it possible to form a triangle with the given sides lengths of 4 ft, 8 ft, and 18 ft. If not explain why not.