SCORE

Preparing for College Entrance Exams Chapter 1

Directions: Write the letter of the best answer in the space provided.

- 1. Points A, B, C, and D are coplanar. A, B, and C are collinear but B, C, and D are not. How many different lines are determined by points A, B, C, and D?
 - (A)3

 $(\mathbf{B})4$

- (C) infinitely many
- (D) cannot be determined from the information given
- 2. j and k are intersecting lines. A and B are points on j, and C and Dare points on k. How many planes contain points A, B, C, and D?
 - (A) none
- (B) exactly one
- (C) infinitely many
- (D) cannot be determined from the information given
- 3. Points M, A, T, H, and P are arranged on a line so that T is the midpoint of \overline{HM} , M is the midpoint of \overline{HA} , and P is the midpoint of \overline{AT} . Which of the following are true?
 - I. P is on \overline{MA} .
- II. M is on \overrightarrow{TH} .
- III. PH = TA

- (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) I, II, and III
- **4.** In the figure, AC = 24, AB = 6x 6, BC = 5x 3, and BE = 3x + 2. Which do you know is true?
 - I. \overline{AC} bisects \overline{DE} .
 - II. \overline{DE} bisects \overline{AC} .
 - III. \overrightarrow{DE} bisects \overrightarrow{AC} .
 - (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) II and III only
- 5. Find the values of x and y. (The figure is not drawn to scale.)
 - (A) x = 20, y = 34
- **(B)** x = 10, y = 52
- (C)x = 12, v = 18
- **(D)** x = 11, y = 7
- 6. Point A lies in plane K, but point B does not. A line l through B intersects K at point C. Which of the following must be true?
 - I. A, B, and C are coplanar.
 - II. The midpoint of \overline{AB} lies in plane K.
 - III. The midpoint of \overline{AC} lies in plane K.
 - (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) I and III only
- 7. In the figure, \overrightarrow{BD} bisects $\angle ABE$, \overrightarrow{BE} bisects $\angle ABG$, $m \angle EBF = 37$, and $m \angle CBG = 44$. Find $m \angle DBF$. (The figure is not drawn to scale.)
 - (A) 68
- (B) 34
- **(C)** 82
- **(D)** 71

Directions: Write the letter of the best answer in the space provided.

- 1. Which of the following statements is equivalent to the statement "p implies q"?
 - (A) p if and only if q.
- (B) If p, then q.
- (C) q only if p.

(D) p if q.

- (E) none of these
- 2. If $4x = 9 \frac{1}{2}x$, which of the following must be true?

I.
$$4x - 9 = \frac{1}{2}x$$

II.
$$4x - \frac{1}{2}x = 9$$

III.
$$8x = 18 - x$$

IV.
$$\frac{1}{2}x = 9 - 4x$$

- (A) I only
- (B) II only
- (C) III only

- (D) II and III only
- (E) III and IV only
- 3. The measure of the supplement of an angle is 14 less than 3 times the measure of the complement. Find the measure of the complement.
 - (A) 38
- **(B)** 52
- (C) 142
- **(D)** 19
- (E) none of these
- 4. Which of the following must be known to be true to prove that BC < CD?

$$I. AB = CD$$

II.
$$BC < AB$$

III.
$$AB + BC + CD = AD$$

- (A) I only
- (B) II only
- (C) I and II only

- (D) II and III only
- (E) I, II, and III
- 5. $\angle ABC$ and $\angle CBD$ are adjacent congruent angles, and $m \angle ABD = 160$. What are the two possible measures for $\angle ABC$?
 - (A) 80, 160
- (B) 100, 160
- (C) 80, 100

(D) 90, 180

- (E) 160, 200
- 6. If abc = 3 and a = b, then c equals which of the following?

(A)
$$\frac{3}{a^2}$$

(B)
$$3 - a^2$$

(C)
$$3 - 2a$$

(D)
$$3 + 2a$$

$$(\mathbf{E}) \, \frac{3}{2a}$$

Directions: Write the letter of the best answer in the space provided.

- 1. Use inductive reasoning to determine a formula for the number of regions into which a circle is divided by n diameters.
 - (A) n + 1
- **(B)** 2^n
- (C) 2n + 2
- **(D)** 2*n*
- 2. A and B are regular polygons and A has 2 more sides than B. The measure of each interior angle of A is 6 greater than the measure of the interior angle of B. How many sides does A have?
 - (Á) 6
- **(B)** 8
- (C) 10
- **(D)** 12
- 3. Planes K and J are parallel. Line p lies in plane K and line q lies in plane J. Which of the following statements must be true?
 - (A) p and q are always parallel. (B) p and q are sometimes parallel.
 - (C) p and q are never parallel.
- (D) p and q are always coplanar.
 - (E) p and q sometimes intersect.
- **4.** $\overrightarrow{AD} \perp \overrightarrow{DC}, \overrightarrow{AB} \parallel \overrightarrow{DC}, \overrightarrow{DE}$ bisects $\angle ADC$, and $m \angle ECB = 40$. Find $m \angle DEC$. (The figure is not drawn to scale.)
 - (A) 90

- **(B)** 95
- (C) 85
- (D) cannot be determined from the information given
- 5. Find $m \angle ABC$ if $m \angle A = 48$ and $m \angle C = 46$. (The figure is not drawn to scale.)
 - (A) 94

- **(B)** 86
- (C) 84
- (D) cannot be determined from the information given
- 6. Find $m \angle ADC$. (The figure is not drawn to scale.)
 - (A) 53
- **(B)** 43
- (C) 137
- **(D)** 127
- 7. In the figure, $m \angle ABE = m \angle EDF = m \angle BEC$. Which of the following pairs of lines must be parallel?
 - I. \overrightarrow{AB} and \overrightarrow{CD}
- II. \overrightarrow{BE} and \overrightarrow{DF}
- III. \overrightarrow{AE} and \overrightarrow{CF}

- (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) I and III only
- 8. In $\triangle ABC$, \overrightarrow{BD} and \overrightarrow{CD} are angle bisectors, and $\overrightarrow{CE} \parallel \overrightarrow{BD}$. If $m \angle BAC = 70$, what is $m \angle DCE$?
 - (A).70
- (B) 105
- (C) 125
- (D) 153.5

Answers

- 1. _____D
- 3 B
- 4. ___D__
- 5. <u>A</u>
- 6. _______
- 7. _____D___
- 8. ______

Question 7

Answers

Preparing for College Entrance Exams Chapter 4

Directions: Write the letter of the best answer in the space provided.

1. $\overline{AB} \perp \overline{BD}$, $\overline{AB} \parallel \overline{DE}$, \overline{CF} bisects \overline{AE} and \overline{BD} . and AB = DE. What can you conclude?

- (A) $\triangle ABC \cong \triangle DEC$
- **(B)** $\triangle ABC \cong \triangle EDC$
- (C) $\triangle ABC \cong \triangle CDE$
- (D) none of these

- 2. $\overrightarrow{AB} \parallel \overrightarrow{CD}$, $\overrightarrow{AB} = CD$, and $\overrightarrow{AF} = FD = DE$. What can you conclude? (Figure is not drawn to scale.)
 - I. $\triangle ABF \cong \triangle DCE$
 - II. $\triangle ABF \cong \triangle DBF$
 - III. $\triangle DBF \cong \triangle DCE$
 - (A) I only
- (B) II only
- (C) III only
- (D) I, II, and III

- 3. $\overline{SR} \parallel \overline{TV}$, $\overline{TR} \cong \overline{UV}$, and \overline{TW} bisects both \overline{SU} and $\angle RTV$. What can you conclude?
 - (A) The SAS Postulate can be used to prove that $\triangle RST \cong \triangle VTU$.
 - **(B)** The ASA Postulate can be used to prove that $\triangle RST \cong \triangle VTU$.
 - (C) The SSS Postulate can be used to prove that $\triangle RST \cong \triangle VTU$.
 - (D) There is not sufficient information to prove that $\triangle RST \cong \triangle VTU$.
- 4. \overline{AC} bisects $\angle BAD$, $\overline{AB} \perp \overline{BC}$, and $\overline{AD} \perp \overline{CD}$. The given information is sufficient to prove which of the following?
 - I. $\overline{AC} \perp \overline{BD}$
 - II. \overline{AC} bisects \overline{BD} .
 - III. $\overline{AB} \parallel \overline{CD}$
 - (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) II and III only
- 5. P, Q, and R are collinear points with PQ = QR. Point S is equidistant from \overrightarrow{QP} and \overrightarrow{QR} . Which of the following must be true?
 - I. $\triangle PQS \cong \triangle RQS$
 - II. S lies on the perpendicular bisector of \overline{PR} .
 - III. S is equidistant from P and R.
 - (A) I only
- (B) II only
- (C) I and II only

- (D) I and III only
- (E) I, II, and III
- **6.** BA = BE, $\overline{BE} \parallel \overline{CD}$, and $m \angle ACD = 56$. Find $m \angle ADC$.
 - (A) 56
- **(B)** 62
- **(C)** 68
- (D) 124
- (E) cannot be determined from the information given

The second secon

Preparing for College Entrance Exams *Chapter 5*

Directions: Write the letter of the best answer in the space provided.

- 1. In quadrilateral TUVW, $\overline{TW} \parallel \overline{UV}$. What additional information is needed to prove that \overline{TV} bisects \overline{WU} ?
 - I. $\overline{TU} \parallel \overline{WV}$
 - II. TW = UV
 - III. TU = WV
 - (A) I only
- (B) II only
- (C) III only

(D) I or II

- (E) I or II or III
- 2. A rhombus is also a square only if it is also a(n):
 - (A) parallelogram
- (B) trapezoid
- (C) rectangle

- (D) equilateral quadrilateral
- (E) convex polygon
- 3. ABCD is a quadrilateral with $m \angle A = 2x$, $m \angle B = 3x 15$, $m \angle C = 4x 90$, and $m \angle D = x + 15$. What can you conclude?
 - I. $m \angle A = 90$
 - II. ABCD is a rectangle.
 - III. ABCD is a parallelogram.
 - (A) I only
- (B) I and III only
- (C) III only

- (D) I, II, and III
- (E) none of these
- 4. B and G are the midpoints of \overline{AC} and \overline{AF} , respectively. C and F are the midpoints of \overline{BD} and \overline{GE} , respectively. BGED is a trapezoid. If CF = 36, find DE.
 - (A) 54

- (B)72
- (C)45
- (D) cannot be determined from the information given
- 5. $\overline{RS} \parallel \overline{UT}, RV = VT$, and \overline{RT} bisects $\angle URS$. Which of the following best describes RSTU? (The figure is not drawn to scale.)
 - (A) parallelogram
- (B) rhombus
- (C) rectangle

(D) square

- (E) none of these
- 6. For quadrilateral WXYZ it is known that WX = YZ. Which of the following additional pieces of information is *not* sufficient to prove that WXYZ is a parallelogram?
 - (A) $\overline{WX} \parallel \overline{YZ}$
- $\mathbf{(B)}\,XY=WZ$
- $(\mathbf{C})\overline{XY} \parallel \overline{WZ}$
- (D) $\angle W$ is supplementary to $\angle Z$.
- (E) \overrightarrow{WY} is the perpendicular bisector of \overline{XZ} .
- 7. ABEG is a rectangle. \overline{HC} bisects \overline{AF} and \overline{BD} . Find the value of the expression $\frac{BD}{CE} \cdot \frac{AF}{HG}$.
 - (A) 1

(B) 2

- $(\mathbf{C})4$
- (D) cannot be determined from the information given

Question 5

Directions: Write the letter of the best answer in the space provided.

- 1. For which of the following statements are the statement, its contrapositive, its converse, and its inverse all true?
 - I. If a > 1, then $a^2 > a$.
 - II. Vertical angles are congruent.
 - III. If two lines form congruent adjacent angles, then the lines are perpendicular.
 - (A) I only
- (B) II only
- (C) III only

- (D) I and III only
- (E) I, II, and III
- 2. In $\triangle ABC$, AB = 7 and BC = 10. AC cannot equal:
 - (A) 7
- **(B)** 10
- (C)3.14
- **(D)** 17
- (E) $\frac{34}{3}$
- 3. In $\triangle ABC$, $m \angle A = 60$ and $m \angle DBC = 31$. \overline{BD} bisects $\angle ABC$ and \overline{CD} bisects $\angle ACB$. Which side of $\triangle ABC$ is the longest? (The figure is not drawn to scale.)
 - (A) \overline{BD}
- **(B)** \overline{DC}
- $(C)\overline{AC}$
- (D) cannot be determined from the information given
- 4. Based on the information in the diagram at the right, which of the following is true? (The figure is not drawn to scale.)
 - (A) d > a > e > c > b
- **(B)** d > e > c > b > a
- (C) e > a > b > c > d
- (D) d > a > e > b > c

Questions 5-7 each consist of two quantities, one in Column A and one in Column B. Figures may not be drawn to scale. Compare the two quantities and in the answer blank write:

- (A) if the quantity in Column A is greater.
- (B) if the quantity in Column B is greater.
- (C) if the two quantities are equal.
- (D) if the relationship cannot be determined from the information given.

	Column A	Column B
5.	$m \angle ACE$	$m \angle BAC$
6.	$m \angle ABC$	$m \angle ACB$
7.	$m \angle 1 + m \angle 4$	$m\angle 2 + m\angle 3$

Directions: Write the letter of the best answer in the space provided.

1. The ratio of the measures of two supplementary angles is 7:8. Which proportion(s) could you use to find the measures of the angles?

I.
$$\frac{x}{y} = \frac{7}{8}$$

II.
$$\frac{x}{y} = \frac{8}{7}$$

III.
$$\frac{x}{180-x} = \frac{7}{8}$$

IV.
$$\frac{x}{180 - x} = \frac{8}{7}$$

(A) I only

(B) II only

(C) I and II only

(D) III and IV only

(E) I, II, III, and IV

2. S and V are the midpoints of \overline{RT} and \overline{RU} , respectively. Which of the following is not true?

Question 2

3. Quad. ABCD ~ quad. HGFE. Find the perimeter of ABCD.

(A) 88

(B) 22

(C)66

(D) 31

- **4.** In the triangle shown, $\overline{UY} \parallel \overline{VX}$, and \overline{TW} is the perpendicular bisector of both \overline{UY} and \overline{VX} . How many pairs of similar triangles are shown in the figure?
 - (A) 3
- $(\mathbf{B})4$
- (C)5
- $(\mathbf{D}) 6$
- $(\mathbf{E})7$
- 5. Any two equilateral triangles are similar. Which of the following can be used to prove such similarity?
 - I. AA Similarity Postulate
 - II. SSS Similarity Theorem
 - III. SAS Similarity Theorem
 - (A) I only
- (B) II only
- (C) III only

- (D) I and II only
- (E) I, II, and III
- **6.** In right $\triangle MOP$, $\overline{NQ} \perp \overline{MO}$. MN = 9, NO = 7, and MP = 20. Find MQ.
 - (A) 11.25
- **(B)** 8.75
- (C) 7.5
- (D) 9.25
- **(E)** 10.75

Answers

- 4. <u>E</u>
- 5. <u>E</u>

Cumulative Review: Chapters 1–7

True-False Exercises

Write T or F to indicate your answer.

- 1. If AX = XB, then X must be the midpoint of \overline{AB} .
- 2. Definitions may be used to justify statements in a proof.
- 3. If a line and a plane are parallel, then the line is parallel to every line in the plane.
- 4. When two parallel lines are cut by a transversal, any two angles formed are either congruent or supplementary.
- 5. If the sides of one triangle are congruent to the corresponding sides of another triangle, then the corresponding angles must also be congruent.
- 6. Every isosceles trapezoid contains two pairs of congruent angles.
- 7. If a quadrilateral has two pairs of supplementary angles, then it must be a parallelogram.
- 8. If the diagonals of a quadrilateral bisect each other and are congruent, then the quadrilateral must be a square.
- 9. In $\triangle PQR$, $m \angle P = m \angle R = 50$. If T lies on \overline{PR} and $m \angle PQT = 42$, then PT < TR. F
- 10. In quad. WXYZ, if WX = XY = 25, YZ = 20, ZW = 16, and WY = 20, then \overline{WY} divides the quadrilateral into two similar triangles. \top
- 11. Two equiangular hexagons are always similar. =

Multiple-Choice Exercises

Indicate the best answer by writing the appropriate letter.

- 1. Which pair of angles must be congruent?
 - a. $\angle 1$ and $\angle 4$
- **b.** $\angle 2$ and $\angle 3$
- c. $\angle 2$ and $\angle 4$
- (d.) $\angle 4$ and $\angle 5$
- e. $\angle 2$ and $\angle 8$
- 2. If a, b, c, and d are coplanar lines such that $a \perp b$, $c \perp d$, and $b \parallel c$, then:
 - a. a 15°d
- b. $b \mid d$
- (c.) a || d
- d. $a \parallel c$
- e. none of these

- 3. If $\triangle ABC \cong \triangle NDH$, then it is also true that:
 - $\mathbf{a.} \ \angle B \cong \angle H$ $\mathbf{d.} \ CA \cong HN$

b. $\angle A \cong \angle H$

- c. $\overrightarrow{AB} \cong \overrightarrow{HD}$
- e. $\triangle CBA \cong \triangle DHN$
- 4. If PQRS is a parallelogram, which of the following must be true?
 - a. PQ = QR
- $(\mathbf{b}.)PQ = RS$
- c. PR = QS
- **d.** $\overline{PR} \perp \overline{QS}$
- e. $\angle Q \cong \angle R$
- 5. Which of the following can be the lengths of the sides of a triangle?
 - a. 3, 7, 10
- **b.** 3, 7, 11
- (c.) 0.5, 7, 7
- d. $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$
- e. 1, 3, 5

Always-Sometimes-Never Exercises

Write A, S, or N to indicate your choice.

- A 1. If a conditional is false, then its converse is ? false. S
 - 2. Two vertical angles are ? adjacent. N
 - 3. An angle $\frac{?}{}$ has a complement. \leq
 - 4. Two parallel lines are _? coplanar. A
 - 5. Two perpendicular lines are $\frac{?}{}$ both parallel to a third line. N
 - 6. A scalene triangle is _? equiangular. N
 - 7. A regular polygon is _? equilateral. A
 - 8. A rectangle is ? a rhombus. S
 - 9. If $\overline{RS} \cong \overline{MN}$, $\overline{ST} \cong \overline{NO}$, and $\angle R \cong \angle M$, then $\triangle RST$ and $\triangle MNO$ are $\underline{?}$ congruent. S
 - 10. The HL method is _? appropriate for proving that two acute triangles are congruent. N
 - 11. If AX = BX, $AY = BY_i$ and points A, B, X, and Y are coplanar, then \overline{AB} and \overline{XY} are $\frac{?}{}$ perpendicular.
- 12. The diagonals of a trapezoid are ? perpendicular.
 - 13. If a line parallel to one side of a triangle intersects the other two sides, then the triangle formed is ? similar to the given triangle.
 - 14. If $\triangle JKL \cong \triangle NET$ and $\overline{NE} \perp \overline{ET}$, then it is _? true that LJ < TE. \nearrow
 - 15. If AB + BC > AC, then A, B, and C are __? collinear points. \leq
 - 16. A triangle with sides of length x-1, x, and x is $\frac{?}{}$ an obtuse triangle. \bigvee

Completion Exercises

Complete each statement in the best way.

- A 1. If \overrightarrow{YW} bisects $\angle XYZ$ and $m \angle WYX = 60$, then $m \angle XYZ = \frac{?}{}$.
 - 2. The acute angles of a right triangle are ?. Complementary
 - 3. A supplement of an acute angle is a(n) _ angle. obtuse.
 - 4. Adjacent angles formed by ? lines are congruent. per pendicular
 - 5. The measure of each interior angle of a regular pentagon is _?.. 108
 - 6. In $\triangle ABC$ and $\triangle DEF$, $\angle A \cong \angle D$ and $\angle B \cong \angle E$. $\triangle ABC$ and $\triangle DEF$ must be ?. Similar
- 8 7. When the midpoints of the sides of a rhombus are joined in order, the resulting quadrilateral is best described as a ?. rectangle
 - 8. If $\frac{r}{s} = \frac{t}{u}$, then $\frac{r+s}{t+u} = \frac{?}{?}$.
 - 9. The ratio of the measures of the acute angles of a right triangle is 3:2. The measure of the smaller acute angle is ?. 36

Algebraic Exercises

In Exercises 1–9 find the value of x.

- 1. On a number line, R and S have coordinates -8 and x, and the midpoint 6 of RS has coordinate -1.
 - 2. Two vertical angles have measures $x^2 + 18x$ and $x^2 + 54$. 3
 - 3. The measures of the angles of a quadrilateral are x, x + 4, x + 8, and x + 12.
 - 4. The lengths of the legs of an isosceles triangle are 7x 13 and 2x + 17.
 - 5. Consecutive angles of a parallelogram have measures 6x and 2x + 20. \bigcirc
- 6. A trapezoid has bases of length x and x + 8 and a median of length 15.

7.
$$\frac{3x-1}{4x+2}=\frac{2}{3}$$

8.
$$\frac{5}{8} = \frac{x-1}{6} + 4\frac{3}{4}$$

8.
$$\frac{5}{8} = \frac{x-1}{6} + 4\frac{3}{4}$$
 9. $\frac{x}{x+4} = \frac{x+3}{x+9} = 6$

- 10. The measure of a supplement of an angle is 8 more than three times the measure of a complement. Find the measure of the angle. 49
 - 11. In a regular polygon, the ratio of the measure of an exterior angle to the measure of an interior angle is 2:13. How many sides does the polygon have? 15
 - 12. The sides of a parallelogram have lengths 12 cm and 15 cm. Find the lengths of the sides of a similar parallelogram with perimeter 90 cm. 20 cm 25 cm
 - 13. A triangle with perimeter 64 cm has sides with lengths in the ratio 4:5:7. Find the length of each side. 16 cm, 20 cm 28 cm
 - 14. In $\triangle XYZ$, XY = YZ. Find the measure of $\angle Z$ if $m \angle X: m \angle Y = 5:2$.
 - 15. In the diagram, $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{GC}$. Find the values of x and y. $\chi = 6$ y = 3.5

Proof Exercises (see attached)

- 1. Given: $SU \cong SV$; $\angle 1 \cong \angle 2$
 - Prove: $\overline{UQ} \cong \overline{VQ}$
 - 2. Given: QS bisects $\angle RQT$; $\angle R \cong \angle T$
 - Prove: SQ bisects $\angle RST$.
 - 3. Given: $\triangle QRU \cong \triangle QTV$; $\overline{US} \cong \overline{VS}$
 - Prove: $\triangle QRS \cong \triangle QTS$
 - **4.** Given: QS bisects $\angle UQV$ and $\angle USV$; $\angle R \cong \angle T$ Prové: $\overline{RQ} \cong \overline{TQ}$
 - 5. Given: $\overline{EF} \parallel \overline{JK}$; $\overline{JK} \parallel \overline{HI}$

Prove: $\triangle EFG \sim \triangle IHG$

- 6. Given: $\frac{JG}{HG} = \frac{KG}{IG}$, $\angle 1 \cong \angle 2$
 - Prove: $\overline{EF} \parallel \overline{HI}$

Mixed Review

Chapters 1-7

Directions: Write answers in the spaces provided.

- 1. $\overline{AB} \parallel \overline{CD} \parallel \overline{EF}$ and BD = DF. If AC = 7, find AE.
- 2. Name the property that justifies the statement "If y + 7 = 19, then y = 12."

SUBTRACTION PROP OF =

- 4. \overline{MN} is the median of trapezoid TRAP. If TR = 16 and PA = 38, find MN. 2.7

Ex. 4

5. Find the value of x. 12

- 7. X is a point on \overline{AE} such that AE = 13, AX = 3y 5, and XE = 2y 2. Is X the midpoint of \overline{AE} ?
- 8. In quadrilateral ABCD, $\overline{AD} \parallel \overline{BC}$, $m \angle D = 90$, $m \angle C = x + 15$, and $m \angle B = 2x + 15$. Find $m \angle A$.
- 10. In $\triangle RST$, $\overline{UV} \parallel \overline{TS}$. What postulate allows you to conclude that $\triangle RUV \sim \triangle RTS$?

11. What is the correct first sentence for an indirect proof of the conditional "If $\angle A \not = \angle B$, then $\overline{AC} \not = \overline{BC}$."

Assume temp. that Ac = Bc

12. $\angle A$ and $\angle B$ are alternate interior angles formed by a transversal of two parallel lines. If $m \angle A = 12x + 2$ and $m \angle B = 9x + 20$, find the measures of $\angle A$ and $\angle B$.

Mixed Review (continued)

13. Two sides of a triangle are 7 cm and 11 cm long. The third side of the triangle must be longer than _____ cm and shorter than _____ cm.

DATE .

- 14. In the diagram, if $\angle 1 \cong \angle 2$, find the value of x. 3.5
- 15. $\triangle ABC$ is isosceles with median \overline{BD} . If CD = 4x 2, and DA = 10 + x, find the value of CA. 28
- 16. $\triangle ABC$ is isosceles, $\overline{AB} \cong \overline{BC}$, and $\overline{BD} \perp \overline{CA}$. Name three pairs of congruent angles. $\angle A \cong \angle C \angle ADB \cong \angle CDB \angle ABD \cong \angle CBD$

- 17. One angle of an isosceles trapezoid measures 72. Find the measures of the other angles. 72, 108, 108
- 18. Predict the next two numbers in the sequence: $8, 4, \frac{4}{3}, \frac{1}{3}, \dots$
- 19. In $\triangle MNO$ and $\triangle PQR$, MN = 7, NO = 12, MO = 10, PQ = 10.5, QR = 15, and PR = 18.
 - a. Must the two triangles be similar? ____yes___
 - b. What theorem or postulate justifies your answer to part (a)?

20. Quad. NICE is a square. If ME = 6x - 15 and MI = 3x, find the value of x. ____5

In Exercises 21 and 22, QUAD is a parallelogram with diagonals intersecting at P.

- 21. If QP = 5x 4, PA = 4x + 16, and DU = 6x + 8, find the value of DU. 128
- 22. If QD > QU, then which angle is larger, $\angle DPQ$ or $\angle QPU$?
- 23. The measure of the supplement of an angle is 4 more than 3 times the measure of the angle. Find the measures of the angle, its complement, and its supplement. 44, 46, 136
- 24. The measure of each interior angle of a regular polygon is 5 times the measure of an exterior angle. How many sides does the polygon have?

_		_	
Ν	IΑ	M	Ε

DATE	
UAIL	

SCORE

Mixed Review (continued)

25. The ratio of the measures of the angles of a triangle is 3:5:4. Find the measure of each angle. 45,75,90

PROPERTY CONTRACTOR OF THE PROPERTY OF THE

- **26.** In $\triangle ABC$, $m \angle A = 3x + 9$, $m \angle B = 4x 6$, and $m \angle C = 2x + 24$. Name the longest side of $\triangle ABC$. ABC.
- 27. In quadrilateral ABCD, if $m \angle C = 72$, find a measure for $\angle D$ that
- 28. Find the distance between two points on a number line whose coordinates are -5 and 23. 28
- 29. Supply the missing reasons for the key steps in the proof.

Given: $\triangle PQR \cong \triangle STU$; \overline{PX} and \overline{SY} are altitudes.

Key steps of proof:

b.
$$\angle PXQ \cong \angle SYT$$

c.
$$\triangle PXO \cong \triangle SYT$$

d.
$$\overline{PX} \cong \overline{SY}$$

- **30.** $\triangle ABC \sim \triangle DEF$
 - **a.** If AB = 9, BC = 12, DE = 15, and DF = 18, find EF and AC.

$$EF = 20$$
, $AC = 10.8$

- **b.** What is the scale factor of $\triangle ABC$ to $\triangle DEF$?
- **31.** PART is a quadrilateral with $\angle P \cong \angle R$. What additional information would be needed to prove that PART is a parallelogram?

 $\angle A \cong \angle T$ PAIRT, ARII PT 32. In $\triangle ABC$, $\angle A$ and $\angle B$ are complementary angles and

AB > BC > AC. What kind of triangle is $\triangle ABC$? RT. Scalene

33. In $\triangle TRI$, $\overline{TR} \cong \overline{TI}$ and $m \angle T = 38$. Find the measures of $\angle R$ and $\angle I$. $m \angle R = \underline{71}, m \angle I = \underline{71}$

34. Complete: If $\frac{x}{3} = \frac{y}{5}$, then $\frac{x+3}{3} = \frac{y+5}{5}$

35. Find the value of x if $\frac{x+3}{3} = \frac{x+2}{4}$.

36. Given the following statement: " $\frac{1}{r} > 0$ if x > 0."

a. Write the converse. TF \$ >0, Then *>0

b. Write the contrapositive $IF \stackrel{\downarrow}{x} \stackrel{\leq}{=} 0$, Then $x \stackrel{\leq}{=} 0$

Algebra Review: Radical Expressions

The symbol $\sqrt{}$ always indicates the positive square root of a number. The ràdical $\sqrt{64}$ can be simplified.

Simplify.

Example 1 a.
$$\sqrt{56}$$
 b. $\sqrt{\frac{16}{3}}$ c. $(3\sqrt{7})^2$

b.
$$\sqrt{\frac{16}{3}}$$

c.
$$(3\sqrt{7})^2$$

a.
$$\sqrt{56} = \sqrt{4 \cdot 14} = \sqrt{4} \cdot \sqrt{14} = 2\sqrt{14}$$

b.
$$\sqrt{\frac{16}{3}} = \frac{\sqrt{16}}{\sqrt{3}} = \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$$

c.
$$(3\sqrt{7})^2 = 3\sqrt{7} \cdot 3\sqrt{7} = 3 \cdot 3 \cdot \sqrt{7} \cdot \sqrt{7} = 9 \cdot 7 = 63$$

1.
$$\sqrt{36}$$
 6

2.
$$\sqrt{81}$$
 9

3.
$$\sqrt{24}$$
 2 6 4. $\sqrt{98}$ 7 7 2 5. $\sqrt{300}$ 10 5

5.
$$\sqrt{300}$$
 10

6.
$$\sqrt{\frac{1}{4}}$$
 $\frac{1}{2}$

$$7. \frac{\sqrt{5}}{\sqrt{3}} \frac{\sqrt{15}}{3}$$

6.
$$\sqrt{\frac{1}{4}}$$
 $\frac{1}{2}$ 7. $\frac{\sqrt{5}}{\sqrt{3}}$ $\frac{\sqrt{15}}{3}$ 8. $\sqrt{\frac{80}{25}}$ $\frac{4\sqrt{5}}{5}$ 9. $\frac{2\sqrt{3}}{\sqrt{12}}$ 10. $\sqrt{\frac{250}{48}}$

$$\sqrt{12}$$
14 $(2\sqrt{9})^2$ 73

10.
$$\sqrt{\frac{250}{48}} = \frac{513}{12}$$

11.
$$\sqrt{13^2}$$
 13

11.
$$\sqrt{13^2}$$
 13 12. $(\sqrt{17})^2$ 17 13. $(2\sqrt{3})^2$ 14. $(3\sqrt{8})^2$ 72 15. $(9\sqrt{2})^2$ 16:

15.
$$(9\sqrt{2})^2$$
 16

16.
$$5\sqrt{18}$$
 15 $\sqrt{2}$

16.
$$5\sqrt{18}$$
 $|5\sqrt{2}$ 17. $4\sqrt{27}$ $|7\sqrt{3}$ 18. $6\sqrt{24}$ $|2\sqrt{6}$ 19. $5\sqrt{8}$ $|0\sqrt{2}$ 20. $9\sqrt{40}$ $|8\sqrt{7}|$

Solve for x. Assume x represents a positive number.

Example 2
$$2^2 + x^2 = 4^2$$

Example 3
$$x^2 + (3\sqrt{2})^2 = 9^2$$

$$4 + x^{2} = 16$$

$$x^{2} = 12$$

$$x = \sqrt{12}$$

$$x = 2\sqrt{3}$$

$$x^{2} + 18 = 81$$

$$x^{2} = 63$$

$$x = \sqrt{63}$$

$$x = 3\sqrt{7}$$

21.
$$3^2 + 4^2 = x^2$$
 5

21.
$$3^2 + 4^2 = x^2$$
 5 22. $x^2 + 4^2 = 5^2$ 3

24.
$$x^2 + 3^2 = 4^2 \sqrt{7}$$

24.
$$x^2 + 3^2 = 4^2 \sqrt{7}$$
 25. $4^2 + 7^2 = x^2 \sqrt{65}$ 26. $x^2 + 5^2 = 10^2 5\sqrt{3}$

27.
$$1^2 + x^2 = 3^2$$
 253

27.
$$1^2 + x^2 = 3^2$$
 28. $x^2 + 5^2 = (5\sqrt{2})^2$ 29. $(x)^2 + (7\sqrt{3})^2 = (2x)^2$

23.
$$5^2 + x^2 = 13^2$$

$$26. x^2 + 5^2 = 10^2 5\sqrt{3}$$

29.
$$(x)^2 + (7\sqrt{3})^2 = (2x)^2$$

Challenge

Given regular hexagon ABCDEF, with center O and sides of length 12. Let G be the midpoint of \overline{BC} . Let H be the midpoint of \overline{DE} . \overline{AH} intersects \overline{EB} at J and \overline{FG} intersects EB at K.

Find JK.

(Hint: Draw auxiliary lines \overline{HG} and \overline{DA} .)

