

SWBAT:

Solve a radical equation.

Key Concept

Power Property of Equality

Words If you square both sides of a true equation, the resulting

equation is still true.

Symbols If a = b, then $a^2 = b^2$.

Example If $\sqrt{x} = 4$, then $(\sqrt{x})^2 = 4^2$.

Square roots and Squares are inverses of each other and cancel each other out.

Examples: # you need to isolate the radical first!
Then square both sides.

1.)
$$\sqrt{x} - 10 = 0$$

$$\sqrt{\chi}^2 = 10^2$$

$$X = 100$$

$$\sqrt{100} - 10 = 0$$
 $10 - 10 = 0$
 $0 = 0$

Examples:

2.)
$$2\sqrt{x} - 12 = 4$$

$$+ 12 + 12$$

$$2\sqrt{x} = 16$$

$$2 = 2$$

$$\sqrt{x} = 8^{2}$$

$$\sqrt{x} = 8^{2}$$

$$\sqrt{x} = 64$$

$$\frac{\text{Check:}}{2\sqrt{64} - 12 = 4}$$

$$2\sqrt{8} - 12 = 4$$

$$|6 - 12 = 4$$

$$|1 - 12 = 4$$

$$|1 - 12 = 4$$

Examples:

3.)
$$\sqrt{3x + 1} - 2 = 6$$

 $+2 + 2$
 $\sqrt{3x + 1}^2 = 8^2$
 $3x + 1 = 64$
 $-1 = 1$
 $3x = 63$
 $3x = 63$
 $3x = 63$

$$\frac{\text{Chech}}{(3/21)+1} - 2 = 6$$

$$\frac{(53+1)}{(63+1)} - 2 = 6$$

$$\frac{(63+1)}{(64)} - 2 = 6$$

$$\frac{(64)}{(64)} - 2 = 6$$

Checking for Extraneous Solutions.

Extraneous Solution:

a trial solution that does not satisfy the original equation

To find E.S. you ALWAYS have to check your answers!!!!!

Checking for Extraneous Solutions.

1.)
$$\sqrt{4x - 3}^2 = x^2$$

$$\frac{4x - 3}{-4x + 3} = x^2$$

$$\frac{-4x + 3}{-4x + 3} = -4x + 3$$

$$\frac{3}{-1 - 3} = 0 = (x - 1)(x - 3)$$

$$x - 1 = 0 = 0$$

$$x = 3$$

$$\frac{\text{Check}}{\sqrt{4/1} \cdot 3} = 1$$

$$\frac{1}{\sqrt{1 - 3}} = 1$$

$$\frac{1}{\sqrt{1 - 3}} = 3$$

$$\frac{12 \cdot 3}{\sqrt{3}} = 3$$

Checking for Extraneous Solutions.

$$\frac{\text{CMech}}{\text{F4(-5)+45}} = -5$$

$$\frac{-20+45}{5} = -5$$

$$\frac{-5}{5} = -5$$

$$\frac{-5}{5} = -5$$

$$\frac{-5}{5} = -5$$

$$\frac{-5}{5} = -9$$

$$\frac{-5}{5} = -9$$

$$\frac{-9}{6} = 9$$

Variables on Both Sides:

Check Your Progress

Solve each equation. Check your solution.

3A.
$$\sqrt{t+5} = t+3$$

3B.
$$(x-3) = \sqrt{x-1}$$

$$(X-3)(X-3) = X-1$$

$$2-3=\sqrt{2-1} \qquad \chi^{2}-3x-3x+9=x-1$$

$$-1=1 \qquad \qquad \chi^{2}-6x+9=x-1$$

$$-1\times 1 \qquad \qquad \chi^{2}-7x+10=0$$

Did We Reach Our Objective?

 SWBAT understand solve radical equations.

HOMEWORK

- Section 10.4
 - □ #'s 9 20 odd