Group 1:

Section 9.1 & 9.2: Graphing parabolas

Find the vertex, axis of symmetry, y-intercept and create a table of values.

1.

$$y = x^2 - 2x - 6$$

2.

$$f(x) = -x^2 - 2x + 2$$

3. Find the axis of symmetry of $2x^2 + 6x + 1$. It the graph concave up or down?

Answers to Group 4:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.
$$x^2 - 7x = -3$$
 $a = 1 b = -7 c = 3 \text{ (not -3!!)}$

$$x = \frac{7 \pm \sqrt{(-7)^2 - 4(1)(3)}}{2(1)}$$

$$x = \frac{7 \pm \sqrt{49 - 12}}{2}$$

$$x = \frac{7 \pm \sqrt{37}}{2}$$

2.
$$x^2 + 4x + 4 = 0$$
 $a = 1 b = 4 c = 4$

$$x = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-4 \pm \sqrt{16 - 16}}{2}$$

$$x = \frac{-4 \pm \sqrt{0}}{2} \qquad x = \frac{-4 \pm 0}{2}$$

x = -2 (one solution)

Group 2:

Section 9.1-9.2 Graphing

1. Match each equation to its graph.

$$y = 2x^2 - 2$$

 $y = \frac{1}{2}x^2 - 2$

$$y = -\frac{1}{2}x^2 + 2$$

$$y = -2x^2 + 2$$

2. Find the vertex of $-x^2 + 2x + 6$, is the vertex a max or min?

Answers to Group 1:

1

$$y = x^2 - 2x - 6$$

х	У
-1	-3
0	-6
1	-7
7	-6

$$f(x) = -x^2 - 2x + 2$$

AOS:
$$x = \frac{-b}{2a} = \frac{2}{2(1)} = 1$$

Vertex: (1, -7)

AOS:
$$x = \frac{-b}{2a} = \frac{2}{2(-1)} = -1$$

3. Find the axis of symmetry of $2x^2 + 6x + 1$. It the graph concave up or down?

Axis of symmetry
$$x = \frac{-b}{2a} = \frac{-6}{2(2)} = \frac{-6}{4} = -\frac{3}{2}$$

The graph is concave up. (opens up)

Group 3:

Section 9.5: Quadratic Formula

Find the number of solutions by using the discriminant:

1.
$$x^2 + 4x - 12 = 0$$

2.
$$-x^2 + 6x = 10$$

Sketch an example of a graph that has the following number of solutions:

3 One solution

4. No Real Solution

5. Two Solutions

Answers to Group 2:

2. Matching

A.
$$y = -\frac{1}{2}x^2 + 2$$
 B. $y = \frac{1}{2}x^2 - 2$ C. $y = -2x^2 + 2$ D. $y = 2x^2 - 2$

B.
$$y = \frac{1}{2}x^2 - 2$$

C.
$$y = -2x^2 + 2$$

D.
$$y = 2x^2 - 2$$

3. Find the vertex of $-x^2 + 2x + 6$, is the vertex a max or min?

x point of vertex:
$$x = \frac{-b}{2a} = \frac{-2}{2(-1)} = 1$$

y point of vertex:
$$-(1)^2 + 2(1) + 6 = 7$$

1.
$$x^2 - 7x = -3$$

2.
$$x^2 + 4x + 4 = 0$$

Answers to Group 3:

1.

$$b^2 - 4ac$$

$$(4)^2 - 4(1)(-12)$$

$$(4)^2 - 4(1)(-12)$$

$$16 + 48$$

2 solutions

64

$$b^2-4ac$$

$$(6)^2 - 4(-1)(-10)$$

$$36 - 40$$

-4

No Real Solution

3 One solution

4. No Real Solution

5. Two Solutions

